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Symmetric Multiprocessing Workstations

and Servers System-Designed for High

Performance and Low Cost

A new family of workstations and servers provides enhanced
system performance in several price classes. The HP 9000 Series
700 J-class workstations provide up to 2-way symmetric
multiprocessing, while the HP 9000 Series 800 K-class servers
(technical servers, file servers) and HP 3000 Series 9x9KS
business-oriented systems provide up to 4-way symmetric
multiprocessing.

by Matt J. Harline, Brendan A. Voge, Loren P. Staley, and Badir M. Mousa

Blending high performance and low cost, a new family of workstations and servers has been designed to help maintain HP’s
leadership in system performance, price/performance, system support, and system reliability. This article and the
accompanying articles in this issue describe the design and implementation of the HP 9000 J-class workstations, which are
high-end workstations running the HP-UX* operating system, the HP 9000 K-class servers, which are a family of midrange
technical and business servers running the HP-UX operating system, and the HP 3000 Series 9x9KS servers, which are a
family of midrange business servers running the MPE/iX operating system. In this issue, these systems will be referred to
collectively as J/K-class systems.

The goals of the the design team were to achieve high performance and low cost, while at the same time creating a broad
family of systems that would share many of the same components and meet a wide range of customer needs. The challenge
was to create a list of requirements that would meet the needs of the three different target markets: the
UNIX -system-based workstation market, the UNIX-system-based server market, and Hewlett-Packard’s proprietary
MPE/iX-system-based server market. The basic requirements for these systems were to deliver leadership symmetric
multiprocessing performance, memory performance, and capacity, along with exceptional I/O performance. Balanced
system performance was the overall goal.

Hardware Features
All of the J/K-class platforms are built around the same basic building blocks (see Fig. 1). The backbone of these systems is
the high-speed processor-memory bus called the Runway bus. This is a 640-to-768-Mbyte/s (peak sustained bandwidth),
64-bit-wide bus that connects the processors, system main memory, and the I/O adapter (bus converter). The Runway bus is
described in more detail in Article 2. The I/O adapter provides connections to two HP-HSC (Hewlett-Packard high-speed
system connect) buses, providing a raw I/O bandwidth between 128 Mbytes/s and 160 Mbytes per second (95 to 116
Mbytes/s peak sustained bandwidth). The HP-HSC bus is an extension of the GSC (General System Connect) bus used in
earlier workstations.1

In addition to the Runway and HP-HSC buses, the J/K-class systems also support a connectivity I/O bus. In the HP 9000
J-class workstation systems, the connectivity I/O bus is EISA (Extended Industry Standard Architecture); it has a peak
bandwidth of 32 Mbytes/s. In the HP 9000 K-class and HP 3000 Series 9x9KS server systems, the connectivity I/O bus is the
HP Precision Bus (HP-PB). The servers have one or two four-slot HP-PB adapters. Each HP-PB has a peak bandwidth of 32
Mbytes/s.

Processor
The core of the J/K-class systems is a high-performance processor module that interfaces directly to the Runway bus. It is
based on the HP PA 7200 CPU chip,2 a PA-RISC superscalar processor, which is an evolution of the high-performance,
single-chip, superscalar PA 7100 processor. The PA 7200 incorporates a high-speed Runway bus interface, a new data cache
organization with an on-chip assist cache, data prefetching, and two integer ALUs. This microprocessor is fabricated using
HP’s 0.55-micrometer CMOS process and delivers reliable performance up to 120 MHz. More information on the PA 7200 can
be found in Article 3. Fig. 2 is a photograph of the processor module.

The tables on pages 3 and 4 indicate the processor speeds for each of the platforms in the J/K-class family. Table I is for the
HP-UX workstation systems, Table II is for the HP-UX symmetric multiprocessing servers, and Table III is for the MPE/iX
symmetric multiprocessing servers.

http://www.hp.com/hpj/feb96/fb96a2.html
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Fig. 1. Block diagram of the HP 9000 Model K400 server.

System Board
Central to the J/K-class systems is the system circuit board (Fig. 3). This printed circuit board contains all the circuitry
required for implementing the Runway bus and connectors for the processors, the master memory controller, and the I/O
adapter. The bootstrap code and other system-specific hardware are also on the system board. For the entire family of
J/K-class systems, there are only three system board designs: one for the 1-way or 2-way symmetric multiprocessing
workstation configuration (J class), one for the uniprocessor server configuration (K 100), and one for the 1-way to 4-way
symmetric multiprocessing server systems (K2x0, K4x0).

In the workstation systems, the system board includes the Runway bus and system dependent hardware mentioned above,
the complete memory system including the connectors for the memory modules (SIMMs), most of the circuitry required for
the system’s built-in I/O functionality (core I/O), and power supply management and control circuits. Five I/O slots are
provided for system I/O expansion. These five slots are shared; a combination of EISA and HP-HSC cards can be installed,
with a maximum of four EISA cards or three HP-HSC cards. For example, a system could have four EISA cards and one
HP-HSC card, or three EISA and two HP-HSC cards, or two EISA and three HP-HSC cards.
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Fig. 2. Processor module.
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Fig. 3. System board.

Table I
HP 9000 J-Class Processor Speeds

Model Processor
Slots

Processor
Speed

J200 2 100 MHz

J210 2 120 MHz



4        February 1996 Hewlett-Packard Journal

Table II
HP 9000 K-Class Processor Speeds

Model Processor
Slots

Processor
Speed

K100 1 100 MHz

K200 4 100 MHz

K210 4 120 MHz

K400 4 100 MHz

K410 4 120 MHz

Table III
HP 3000 Series 9x9KS Processor Speeds

Series Processor
Slots

Processor
Speed

939KS 1 80 MHz†

959KS 4 100 MHz

969KS 4 120 MHz

   † Effective Processor Speed

The symmetric multiprocessing server system board includes the Runway bus and system dependent hardware as described
above, along with slots for a separate core I/O card, an optional expansion HP-HSC I/O carrier card, one or two 1G-byte
memory carriers, and four or eight HP-PB slots. Four Runway slots are provided for the processor modules. Depending on
the processor used in the system, the Runway bus operates at 100 MHz or 120 MHz.

The uniprocessor system board (HP 9000 Model K100) has a single processor, all memory controllers and SIMM slots, a core
I/O card slot, and four HP-PB slots.

System Firmware
All of the J/K-class systems share a common firmware base that tests and initializes the system on power-up. This code is a
combination of PA-RISC assembly code and C. It was a design goal to support all of the server products using the same
firmware and to have a common firmware base for the technical workstation products. The code was designed in a very
modular fashion so that the code base could be easily ported to the various system platforms.

The system firmware is designed to be very robust. For example, during memory configuration and test, it uses a
combination of bank and page deallocation to deconfigure memory containing hard errors, allowing the user to continue
using the system until the failing memory can be replaced. Similarly, processors that fail self-test are deconfigured and the
system boot process is continued.

In addition to providing a robust system to the customer, the system firmware allows designers and the manufacturing
processes easy access to system test and configuration of hardware and firmware features. Some of these features allow
enabling or disabling of processor cache prefetching, full memory test or memory initialization only, and so on. This helped
in the system debug effort by speeding the boot process and making it possible to disable certain functions while searching
for the root cause of a bug in the system.

Another feature built into the system firmware during the system debug process was a debug interface that would allow the
lab engineers to set soft breakpoints and step through instruction execution one instruction at a time. This tool proved to be
quite valuable, providing increased visibility into system behavior and the system state.

The J/K-class firmware is installed in flash EPROM. The firmware can be updated through the system offline diagnostic
environment. If for any reason the system firmware needs to be modified, it can easily be upgraded by loading a new
firmware image from tape or another medium into system memory and then loading it into the firmware flash EPROM.

The result of these design choices is system firmware that provides flexible functionality, reliable system test and
initialization, and some tolerance for certain types of failed components in the system boot process.
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High-Performance Memory
Memory performance was highly important throughout the J/K-class system design and implementation. The J/K-class
memory subsystem is designed with consideration for high bandwidth, low latency, and expandability from 32M bytes to
2G bytes. It is capable of interleaving memory accesses across 32 banks of memory. The memory system is built around the
master memory controller (MMC), which interfaces to the high-speed Runway bus. The MMC communicates with up to
eight slave memory controllers (SMC) on one or two memory carriers (see Fig. 4 and Article 5). Also on the memory
carriers are data multiplexers and pairs of SIMMs (single-inline memory modules). This design results in a high-bandwidth,
interleaved, 2G-byte memory subsystem. As 64M-bit DRAMs become cost-effective, the 2G-byte limit will increase to 3.75G
bytes of main memory. Table IV shows the maximum amounts of memory available in various J/K-class systems.

Slave Memory Controllers Data MUX

SIMM Slots SIMM Slots

Fig. 4. Memory carrier board.

Table IV
Maximum Memory

System Type       Model or Series Maximum Memory

HP 9000 Model J2x0 1024M Bytes

HP 9000 Model K100
Model K2x0
Model K4x0

512M Bytes
1024M Bytes
2048M Bytes

HP 3000 Series 939KS
Series 959KS
Series 969KS

1856M Bytes
2048M Bytes
2048M Bytes

Supporting a high-density and high-performance memory system with industry-standard memory SIMMs would have
resulted in a costly memory system that would not have performed at the desired levels. Instead of the industry-standard
approach, a denser memory module was designed. These memory modules (Fig. 5) are actually a dual-inline design,
although they are still referred to as SIMMs. In the J/K-class systems, these dual SIMMs are inserted in pairs, providing two
separately addressable, 128-bit, ECC (error correcting code) protected banks of memory (144 bits including ECC check
bits). Each dual SIMM provides 72 bits of the two 144-bit banks. Using 4M-bit or 16M-bit DRAMs, the SIMMs are available in
16M-byte and 64M-byte sizes. While these memory modules are not standard, there is no HP proprietary technology in them,
helping to keep memory pricing very competitive with the industry.

I/O Adapter
The J/K-class I/O adapter (bus converter) interfaces between the Runway bus and the HP-HSC I/O bus. The I/O requirements
for a J/K-class system call for multiple I/O buses, so the I/O adapter package contains two fully independent bus converters
(see Fig. 6a). To maximize system flexibility, the I/O adapter is designed to support a range of bus frequencies on either bus,
thus requiring a full synchronizer. Fig. 6b is a block diagram of the I/O adapter.

The HP-HSC bus only has a 32-bit address space, while the Runway bus supports a 40-bit address space. This requires an
address translation mechanism to provide the additional eight address bits. The processor’s aggressive data prefetching
requires a new mechanism for DMA (direct memory access) to coexist with this processor feature. Hardware cache
coherent I/O solves these two problems (see Article 6). Prefetching is also included in the HP-HSC bus to reduce memory
read latency and increase I/O bandwidth. All of these features required additional hardware support in the I/O adapter.

http://www.hp.com/hpj/feb96/fb96a5.html
http://www.hp.com/hpj/feb96/fb96a6.html
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Fig. 5. Dual-inline memory module.

According to the PA-RISC architecture definition, a bus converter also needs to provide the registers to configure address
space, enable and disable features, log errors, manipulate the TLB, and provide diagnostic access. Therefore, these registers
are included in the I/O adapter.

The J/K-class systems required several other hardware features that by default were put into the I/O adapter. Among these is
the hardware to interface to external components implementing the processor dependent hardware (PDH) necessary to
provide boot firmware, stable storage for system configuration information and error logging, and scratch RAM. The I/O
adapter also provides a real-time clock for keeping track of time when power is off.

Basic VLSI support of scan-based testing, both internal and boundary (JTAG or IEEE 1149.1), is built into the I/O adapter,
along with double-strobe capability for speed path testing and built-in self-test (BIST) for the RAM structures.

Finally, it was desired that the design be done in a modular fashion, enabling future designs to easily borrow portions of the
design for future enhancements or to lower costs. This required that the chip be designed with well-defined and simple
interfaces. The synchronizers made very natural places to define the boundaries of these modules. All of these requirements
led to a modular, synchronizer queue-coupled, hardware cache coherent, dual bus converter design.

Core I/O Functionality
The basic I/O requirements for both the workstation and the server systems include 20-Mbyte/s fast-wide SCSI (Small
Computer System Interface) for system disk connectivity, 5-Mbyte/s single-ended SCSI for archival storage, and an IEEE
802.3 LAN interface for networking. The HP-UX systems also include a Bitronics parallel interface port, keyboard and
mouse connections, and serial I/O ports as part of the core I/O functionality. A photograph of the K-class core I/O board is
shown in Fig. 7. The workstation model adds high-quality audio input and output to the built-in core I/O.

The server system includes additional serial ports and an integrated modem for remote service access. The server systems
also have a remote service console access port to allow remote servicing of hardware and software by Hewlett-Packard’s
customer support organizations.

I/O Expansion
On the HP 9000 K-class server systems, several configurations support various system I/O needs (see Table V). As a
minimum, the system comes with one 32-MHz HP-HSC bus slot for expansion I/O. This slot is in a compact 3-by-5-inch form
factor. As I/O needs increase, the system can be upgraded to provide four 40-MHz HP-HSC slots in addition to the one
32-MHz HP-HSC slot (Model K4x0 only). In addition to the HP-HSC slots, the K-class server has four or eight
Hewlett-Packard Precision Bus (HP-PB) slots. These slots are configured such that the user can install up to four
double-high HP-PB cards and still have four single-high HP-PB card slots available.

Table V
HP 9000 K-Class I/O Expansion Capabilities

Model HP-HSC
Bus Slots

HP-PB
Slots

Peak Sustained
I/O Bandwidth†

K100 1 4 95 Mbytes/s

K200 1 4 211 Mbytes/s

K210 1 4 211 Mbytes/s

K400 5 8 211 Mbytes/s

K410 5 8 211 Mbytes/s

          † Combined bandwidth of the two HP-HSC buses.
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Fig. 6. (a) There are two fully independent I/O adapters in the I/O adapter package. 

(b) I/O adapter block diagram.

In the HP 9000 J-class workstation configurations, the system supports an 8-MHz EISA bus (maximum of four slots) and a
40-MHz HP-HSC expansion I/O bus (maximum of three slots). These slots provide the workstation user with a great deal of
flexibility in configuring I/O devices and meeting high-speed I/O requirements (see Table VI).
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Fig. 7. K-class core I/O board.

Table VI
HP 9000 Model J2x0 I/O Expansion Capabilities

I/O Slot Configuration

Slot 0 HP-HSC

Slot 1 HP-HSC or EISA

Slot 2 HP-HSC or EISA

Slot 3 EISA

Slot 4 EISA

A number of I/O cards are currently available for use in the high-speed I/O and HP-PB bus slots. A number of EISA cards are
supported in the workstation system. The following is a partial list of the I/O cards available for J/K-class systems:
� 5-Mbyte/s single-ended SCSI

� 20-Mbyte/s fast-wide SCSI

� HP Fiber Link

� IEEE 802.3 LAN

� IEEE 802.5 token ring

� FDDI

� FibreChannel

� ATM (asynchronous transfer mode)

� Programmable serial interface

� Bitronics parallel port

� 16-port serial RS-232

� 32-port serial RS-232

� 2D graphics card

� 3D graphics card.

Integrated Peripherals
The server systems all have a standard DDS tape drive and a CD-ROM drive integrated into the system. In addition, there is
space available for up to four 20-Mbyte/s SCSI disk drives in the system box. The workstation comes with a standard
3.5-inch flexible disk drive, a CD-ROM drive, a tape drive, and two slots for 20-Mbyte/s SCSI disk drives built into the system
box.
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Industrial Design
The J/K-class industrial design is intended to convey a strong perception of the power within, wrapped in bold, distinctive
designs that are elegant and pleasing to the eye. The K-class product is designed to work as a floor-standing product as well
as rack-mounted in an industry-standard HP 19-inch EIA rack (Fig. 8). A growing number of rack-mounted HP peripheral
products such as disk arrays, uninterruptible power supplies, and LAN hubs complement the overall system. The J-class
system (Fig. 9) is designed for floor-standing use in the commercial workstation environment, but can be rack-mounted on a
custom basis.

Fig. 8. K-class server configurations.

These machines were designed with ease of assembly and serviceability as high priorities. They use plastic parts that snap
together over a riveted steel chassis without a single screw or fastener, making assembly and disassembly very quick and
easy for service and for the eventual recycling at the end of the products’ life.

Customer ease of use was another design priority. This is evident in the brightly backlit liquid crystal display, which conveys
system status information in a clear text font, a vast improvement over previous systems, which had flashing LEDs. A
simple three-position keyswitch for on, off, and service mode is clearly marked and positioned within easy reach on the
front of the K-class system. The front door gives the user easy access to peripherals and visual feedback in the form of disk
activity lights. Inside the front door are a pocket for the user manual, a safe storage location for the system key, and a
system label with the most pertinent user information.
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Fig. 9. J-class workstation system processing unit.

Extensive effort went into label design, working with field support engineers, to make these products the leaders in their
class in ease of installation, serviceability, and field upgradability. The labels use color coding and detailed diagrams clearly
defining such things as board locations, memory SIMM loading sequences, and disk locations. These have been very
successful in making the many configurations easily understood by customers and HP manufacturing and field service
personnel.

Server Package Design
Like every other aspect of the design of the J/K-class systems, designing the chassis and plastics proved to be challenging.
With a strong emphasis on development schedule and a desire for a very robust and flexible design, the engineering team
had to create some innovative solutions to keep on schedule and keep the cost of the product low.

Several requirements defined the maximum height and width of the server box. It had to fit into a 19-inch rack, so it could
be no wider than 17.3 inches and no deeper than 25 inches. It could be no taller than 25.24 inches, so that as a standalone
unit it would fit under a standard table.

An additional challenge was that of the Runway bus. The expected high speeds of the bus required that the bus length be
kept to a minimum to reduce signal propagation delays. At the same time, up to six different components needed to attach
to this bus: four processors, the master memory controller (MMC), and the I/O adapter. The processor module spacing was
kept to 1.2 inches, allowing the overall length of the Runway bus to be short enough to support reliable 120-MHz operation.

This small size also presented an additional challenge, that of cooling the many components in the system. An intensive
effort was launched to simulate and create mockups of the proposed mechanical designs for airflow and expected internal
system temperature rises. A number of cooling alternatives were proposed and evaluated. The resulting solution provides an
air-cooled system with excellent airflow and a remarkably quiet system for the power dissipated within the box. There are
only two fans in the entire system.

Other desired features helped to define how the system was partitioned into the various circuit boards. Each board needed
to be easy to access. Almost every component in the system can be accessed and removed from the system for maintenance
or repair in a matter of minutes. The size and type of add-on I/O cards also required some creative design to allow flexibility
in the design as well as flexibility for the customer.

Power System
The power system for the J/K-class systems can be split into three subsystems: the system power supply, the system power
monitor, and the uninterruptible power supply (UPS). The power features implemented in the workstation and server
systems are slightly different but follow the same general philosophy: provide reliable power to the system at a low cost.
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The server system power supply provides the voltage rails for the components in the system. This 925-watt supply
incorporates power factor correction and accepts a wide range of input voltages and input frequencies between 50 and 60
Hz. It provides a carryover time of 20 milliseconds after a power failure.

The system power supply does not include any intelligence to control the system turn-on or reset activities. This intelligence
is provided by the system power monitor (Fig. 10). This circuit monitors the various aspects of the computer system and the
power supply output to determine if the power should be turned on or off. This includes monitoring the system internal
temperature, checking the voltage output to ensure that there is no undervoltage or overvoltage condition, and providing
diagnostic messages on the system’s liquid crystal display when problems occur.

The uninterruptible power supply (UPS) is an optional component of the J/K-class systems. It provides additional assurance
of system availability and data integrity, even if the ac power lines fail for any reason. Upon a powerfail event, the UPS
provides ac power to the system for up to 15 minutes, allowing the system to continue operation, or in the case of an
extended power outage, to shut down gracefully and save critical data to disk. When ac power returns, the system will
continue operation, or if it was shut down, it can be restarted without loss of data. 

Fig. 10. System power monitor.

More details on the power supply, monitor, and UPS can be found in the sidebar:  K–Class Power System.

System Performance
The J/K-class systems were developed to provide customers with excellent performance in the intended markets: midrange
servers and high-end workstations. Our goal was not necessarily to provide the highest single-component performance, but
to provide customer-valued application performance at an extremely attractive price.

The most common component benchmark is the SPEC (Systems Performance Evaluation Cooperative) suite, which
measures CPU integer and floating-point performance. For these benchmarks, the processor in the J/K-class products
provides about 168 SPECint92 integer and 258 SPECfp92 floating-point performance at 120 MHz. With the well-balanced
symmetric multiprocessing J/K-class systems, the SPECrate_int performance of a four-processor 120-MHz system is 12,150
and the SPECrate_fp92 performance is 19,600.

It is in the real-world applications and at the system level where the J/K-class computer systems really start to shine. The
balanced design of the Runway processor-memory bus, the memory subsystem, and the performance I/O system provides
the user with exceptional performance. Two widely used benchmarks that try to measure the performance of realistic
customer workloads are SPEC SFS1.0(LADDIS) and TPC-C. The 120-MHz LADDIS performance of the J/K-class is as high as
4750 I/O operations per second, which exceeds many high-end servers that typically have twice as many processors (8 to 10
processors compared to four for a Model K400). A four-way J/K-class server at 120 MHz has demonstrated in excess of 3,000
transactions per minute on the TPC-C transaction benchmark. At the time of introduction of the J/K-class systems, the only
other single system with higher performance was HP’s own T500 corporate business server.

On the technical side, workstation applications clearly benefit from the increased memory bandwidth. At the same time, the
introduction of multiprocessing in a high-end client configuration provides the opportunity for either parallel processing of
a single task or more parallel execution for multiple tasks. With the addition of the new high-end HP Visualize48 graphics,
for which the J-class systems provide some specific hardware performance enhancers, the workstation products will
handle large, complex design and visualization problems easily.

Design for Lasting Value
The J/K-class systems were designed to provide HP’s customers with lasting value. Processors can be easily added to the
system, to a maximum of two processors in the workstation systems and up to four processors in the server systems.

http://www.hp.com/hpj/feb96/fb96a1sb.pdf
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Upgrading from 100-MHz to 120-MHz processors is just as simple. The J/K-class systems are also designed to accept future
processors easily, such as the PA 8000 processor,3 through a simple processor module upgrade.

Not only are processors easy to upgrade, but memory and I/O are also designed so that it is easy to add memory and I/O
functionality. Memory can be added in 32M-byte or 128M-byte increments up to 1024M bytes in a J-class system or up to
2048M bytes in a K-class or Series 9x9KS system. As increased-density DRAMs become cost-effective, memory limits will
increase to 3.75G bytes of main memory, filling most users’ memory configuration and capacity requirements far into the
future.

System Verification
The design of any computer system requires an extensive test and verification effort. For the chips and boards designed for
the J/K-class platforms, many engineer-months were dedicated to ensuring the systems manufactured and shipped to HP’s
customers are of the highest quality and reliability. This testing can be grouped into several different categories: presilicon
chip and system simulation, formal verification methods, system functional verification, chip and system electrical
characterization, and system validation.

Simulation. Before committing any part of the J/K-class design to silicon, extensive simulation had already proven the basic
functionality of each component individually and as part of the system. Each component design team provided a model of
their particular part of the design to an overall system simulation team. The system simulation team then pulled together
tools first to simulate subsystems and eventually to simulate the entire J/K-class system. In addition to the logical simulation
to verify correct functionality, electrical simulation was done for the critical portions of the system such as clock
distribution, system buses, and chip internal critical paths (see Article 4).

Formal Methods. For some parts of any design, it is very difficult to verify complete adherence to design specifications. One
area of concern in the J/K-class design was the bus protocols for the Runway bus. In an effort to reduce risk and improve
system reliability, formal methods4 were used to analyze the bus transaction protocols used in the Runway bus definition.
The analysis pointed to several defects, which were corrected before implementation of the system.

Functional Verification. As the first components became available to the design teams for initial debugging, efforts were
focused on verifying that each component functioned properly in the system. The first goal was to boot the system to the
initial system loader. At this point either the operating system (HP-UX) could be loaded or system and component
diagnostics could be loaded. While booting the operating system is a great accomplishment, the task of verifying correct
functionality was far from completed when this was done.

Numerous tests were developed specifically for the J/K-class systems. These tests employed a number of techniques for
finding defective components and defects in design. These techniques included pseudorandom and pseudoexhaustive code
and data sequences that stressed the processors (integer units, floating-point units, caches, program control, etc.), the
memory and memory controllers, and the I/O bus adapters and I/O controller cards.

Electrical Characterization. Once a minimal level of system functionality was attained, several electrical characterization
efforts were launched to prove that the components and the system would function in the electrical environment. This
testing focused on measuring electrical noise on chips as well as boards, and looking at bus cross talk and power supply
variation and noise. Systems were stressed beyond normal temperature ranges, voltage ranges, and frequency ranges to find
the weakest link in the system electrical environment. Through all this characterization effort, designs were modified and
improved, resulting in a system that is capable of running reliably throughout the specified system operating environment.

System Validation. Because of the desire to stress the system beyond what HP’s customers will do, the functional and
electrical characterization efforts mainly focused on test software and environments that do not match our customers’
operating conditions. While it is likely that all hardware defects (design related as well as manufacturing related) will be
found with the methods shown above, it is not known if the new hardware might uncover software defects. At the same
time, it is possible that actual system software and applications could uncover hardware defects. For this reason, each
system is tested under various load conditions and system configurations while running actual HP-UX and MPE/iX
application programs and system exercisers. These efforts result in a system that has been designed to operate reliably in
normal operating conditions as well as under extremes of environment.

Conclusion
The J/K-class family of workstations and servers takes a big step in the direction of converging HP’s workstation and server
lines. At the same time, the J/K-class provides leadership performance at exceptional value to computer systems users.
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we could design. Confirming the quality of their industrial design, the J/K-class systems won an award at the 1995 iF
(Industrie Forum Design Hanover), the world’s largest product industrial design forum.
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K Class Power System

The power system in the HP 9000 K-class servers uses a number of new and emerging technologies to achieve excellent
platform performance without compromising cost, reliability, and quality metrics. Combined in the power system are the
system power monitor, the system power supply, and an optional uninterruptible power supply (UPS). Key contributions of
the system power monitor include: system turn-on and initialization including error reporting via a front-panel LCD display,
temperature monitoring and cooling, fan speed control based on ambient temperature, fan synchronization and fault
detection, continuous power supply output voltage monitoring, special manufacturing modes of operation, overtemperature
detection and warning, overtemperature shutdown, and other features. The system power supply uses power factor
correction to achieve low power-line distortion while maximizing the available VA capacity of the input ac circuit. A
standard dc-to-dc forward converter follows the regulated power factor corrected output. Remote sensing is used on all
output rails to achieve tight regulation specifications. The power system is optimized for use with several HP UPSs
employing both offline and online technologies. The UPSs use an autoranging technology allowing worldwide use.
Worldwide regulatory and safety approvals apply to these UPSs. The hardware provides power-line filtering and
conditioning while the firmware provides many useful status and control capabilities, both real-time and programmed for
later execution.

System Power Monitor
The system power monitor (Fig. 1) is where the power system gets its HP personality. It was intended that most if not all
nonstandard features of the power system would be concentrated in this assembly, as opposed to having them in the power
supply itself.

System
Logic
Inputs

Latch/
Buffers

Voltages

Temperature
ADC

80C51

Ref

Latch/
Buffers

Fan
Control

Fan A

Fan B

Latch/
Buffers

To LCD

Fig. 1. System power monitor block diagram.

The power monitor is designed around a microprocessor, so that most of its features are determined by firmware. This
made it convenient to modify these features as required during the system development phase, without changing hardware.
The power monitor is powered by a dedicated +15Vdc supply which is turned on at all times if the system has ac power. The
functions of the power monitor are:

� Check the CPU modules in the system to see that they are all compatible with each other.

� Check the power supply in the system to see that it is compatible with the CPUs present.

� Respond to system keyswitch position and turn power supply on and off as required.

� Monitor all power supply output voltages for valid range.

� Monitor ambient temperature and initiate operator warnings.

� Control fan speed as a function of ambient temperature.

� Synchronize the two fans to avoid acoustic beating.

� Check for fan failure.Monitor internal system temperature for valid range.

� Initiate system reset signals.

� Issue ac powerfail warning signal.
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� In case of any system malfunction, shut down the system and write a message to the front-panel liquid crystal dis-
play indicating why the system was shut down.

The notable contributions of the power monitor are its fan control scheme, which makes the system remarkably quiet for its
power level, and its contribution to system maintainability through diagnostic display messages.

System Power Supply
The system power supply is rated for 925W of continuous dc output. Five output rails are provided: +3.30Vdc (VDL), +4.4Vdc
(VDH), +5.1Vdc (VDD), +12Vdc, and –12Vdc. The +3.3Vdc and +5.1Vdc rails are used for standard logic circuits while the
+4.4Vdc is used exclusively for the CPUs. The +12Vdc is used primarily for disk drives and I/O with the remaining –12Vdc
rail being used strictly for I/O. All rails have ±1.5% regulation windows. Additionally, a +15Vdc, 300-mA rail is provided for
use by the system power monitor. This rail is electrically isolated from the computer rails. Its single point of ground is
provided by the power monitor, which eliminates the potential for ground loops. The system power supply implementation
is done entirely in discrete devices with one hybrid, four daughter cards, and a 2.6-mm-thick, HP FR4 motherboard. The
density is 1.8 watts per cubic inch. Both a discrete version and a dc-to-dc module approach were initially investigated, but
cost, cooling, and reliability concerns ultimately resulted in the discrete version being chosen.

The K-class power requirements required the maximum allowable VA capacity of a 100/120Vac, 15A branch circuit. To fully
utilize the 15A circuit and not require customer installation of a 20A branch circuit it was decided early in the development
cycle that the system power supply would use power factor correction. This  means that the input voltage and current
waveforms are in phase, so the power supply appears to be a resistive load on the ac line. By comparison, traditional offline
switchers appear to the ac line as peak detectors and thus there are very large “spikes” of input current at the peaks of the
input voltage waveform. With the system power supply appearing resistive, power is drawn out of the ac line continuously
rather than just at voltage peaks. Without power factor correction, typical offline switchers are limited to approximately
600W given 100Vac input lines. Power factor correction also allows the supply to operate over a wide range of input voltages
without requiring any additional circuitry such as autoranging circuitry or line select switches. The regulated output voltage
of the power factor correction circuit is +400Vdc. The supply is rated to operate with input voltages from 90Vac to 140Vac
for its lower operating range and from 180Vac to 264Vac in its higher operating range. The frequency range of operation in
either voltage range is 50 to 60 Hz. There is a minimum guaranteed carryover time of 20 ms before a powerfail warning is
issued and an additional 5 ms of carryover time after a powerfail is issued. Another benefit of using power factor correction is
that European norms for line distortion are already met when they become mandated in the European Community.

Two forward dc-to-dc converters are employed in the power supply. Both converters take the regulated +400Vdc output of
the power factor correction stage and convert it to the desired regulated output voltage. With the VDD rail exceeding 500W it
made sense, considering component selection and cost, to have VDD generated by one converter and the remaining rails by a
second converter which is rated at about 425 watts. The use of two converters also allows sequencing of the VDD rail with
respect to the VDH rail, which was a semiconductor requirement.

Two output connectors are required for busing power between the power supply and the system board. The footprint of the
connectors measures only six square inches, so the impact of the power system on the system board layout was minimal.

Uninterruptible Power Supplies
Unlike many previous HP systems which used battery backup of only main memory during short duration ac power failures,
thus halting any processes in progress, the K-class power supply uses uninterruptible power supplies (UPSs) for backup.
This allows uninterrupted operation during an ac line failure for some predetermined period of time after which the
computer can be automatically and controllably shut down. Should the power be restored before shutdown is required,
processing will have continued uninterrupted. Should shutdown be required because of an extended power loss then the
computer can do a controlled shutdown programmatically, after which the UPS can be shut down. This controllable turn-off
of the UPS and host computer is well-suited for applications in which customers want to reduce their energy consumption
by shutting down equipment programmatically overnight or over the weekend.

Two UPS technologies are available from HP. The lower-power units—600VA (425W) standalone, 1300VA (1300W)
standalone, 1.3-kVA (1300W) rackmount, and 1.8-kVA (1800W) rackmount—all employ offline technology. The UPS directs
the incoming ac directly to the load being supported unless the input falls outside of a defined set of voltage and frequency
limits. Once this occurs the UPS then switches to inverter mode and outputs regulated ac using its internal batteries and a
dc-to-ac upconverter. This technology is very effective, reliable, cost-competitive, and efficient for many applications in
which a defined loss of ac input for the load can be supported. The time period during which there is no ac input is defined
as transfer time. The offline units have a transfer time of 10 ms maximum and this maps well into HP’s computer products
which have a guaranteed carryover time of 20 ms minimum. The offline topology is very energy efficient; when the ac input
is within tolerance the UPS is just maintaining its internal batteries. Unless the batteries have been run down because of an
earlier power failure the batteries are in a “float” state and require very little input power.

The topology employed by the high-power 3-kVA UPS is online interactive. In this technology the UPS monitors the
incoming ac waveform and adjusts it on a cycle-by-cycle basis, interactively regulating the output ac to the host computer
system. Should the line deviate substantially outside of its normal range the UPS transfers from online to inverter mode and
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continues to provide the load with regulated ac derived from the UPS’s internal batteries. This technology provides
excellent regulation of the ac output supplied to the load under all line conditions and is suitable for mission-critical
applications where even slight losses of ac input are disruptive. The 3-kVA UPS also provides isolation from line for
ground-loop-sensitive products by means of an isolation transformer. This topology is also very energy efficient because the
majority of the losses during normal running are localized in the isolation transformer. With proper choice and design these
losses can be greatly reduced resulting in a very efficient design.

HP’s offline units are autoranging in both voltage and frequency and have world-wide safety and regulatory recognition. This
feature allows worldwide coverage with just one model per power range. These units have 15 minutes of run time at rated
load rather than the industry standard of 7 to 8 minutes. The software feature set includes programmable on and off times,
input voltage, input frequency, output voltage, and battery voltage, UPS internal temperature monitoring, self-test mode, and
numerous other status and warning codes.

HP’s online 3-kVA unit provides regulated 230Vac output at either 50 or 60 Hz. It provides 3 kVA or 3 kW of output, allowing
full utilization with power factor corrected loads. 

Gerald J. Nelson

James K. Koch

Development Engineers

Systems Technology Division

http://www.hp.com/hpj/feb96/fb96a2.html
http://www.hp.com/hpj/feb96/toc-02-96.html
http://www.hp.com/hpj/journal.html


February 1996 Hewlett-Packard Journal       1

A High-Performance, Low-Cost

Multiprocessor Bus for Workstations and

Midrange Servers

The Runway bus, a synchronous, 64-bit, split-transaction, time
multiplexed address and data bus, is a new processor-memory-I/O
interconnect optimized for one-way to four-way symmetric
multiprocessing systems. It is capable of sustained memory
bandwidths of up to 768 megabytes per second in a four-way
system.

by William R. Bryg, Kenneth K. Chan, and Nicholas S. Fiduccia

The HP 9000 K-class servers and J-class workstations are the first systems to introduce a low-cost, high-performance bus
structure named the Runway bus. The Runway bus is a new processor-memory-I/O interconnect that is ideally suited for
one-way to four-way symmetric multiprocessing for high-end workstations and midrange servers. It is a synchronous, 64-bit,
split-transaction, time multiplexed address and data bus. The HP PA 7200 processor and the Runway bus have been
designed for a bus frequency of 120 MHz in a four-way multiprocessor system, enabling sustained memory bandwidths of up
to 768 Mbytes per second without external interface or “glue” logic.

The goals for the design of the Runway protocol were to provide a price/performance-competitive bus for one-way to
four-way multiprocessing, to minimize interface complexity, and to support the PA 7200 and future processors. The Runway
bus achieves these goals by maximizing bus frequency, pipelining multiple operations as much as possible, and using
available bandwidth very efficiently, while keeping complexity and pin count low enough so that the bus interface can be
integrated directly on the processors, memory controllers, and I/O adapters that connect to the bus.

Overview
The Runway bus features multiple outstanding split transactions from each bus module, predictive flow control, an efficient
distributed pipelined arbitration scheme, and a snoopy coherency protocol,1 which allows flexible coherency check
response time.

The design center application for the Runway protocol is the HP 9000 K-class midrange server. Fig. 1 shows a Runway bus
block diagram of the HP 9000 K-class server. The Runway bus connects one to four PA 7200 processors with a dual I/O
adapter and a memory controller through a shared address and data bus. The dual I/O adapter is logically two separate
Runway modules packaged on a single chip. Each I/O adapter interfaces to the HP HSC I/O bus. The memory controller acts
as Runway host, taking a central role in arbitration, flow control, and coherency through use of a special client-OP bus.

The shared bus portion of the Runway bus includes a 64-bit address and data bus, master IDs and transaction IDs to tag all
transactions uniquely, address valid and data valid signals to specify the cycle type, and parity protection for data and
control. The memory controller specifies what types of transactions can be started by driving the special client-OP bus,
which is used for flow control and memory arbitration. Distributed arbitration is implemented with unidirectional wires
from each module to other modules. Coherency is maintained by having all modules report coherency on dedicated
unidirectional wires to the memory controller, which calculates the coherency response and sends it with the data.

Each transaction has a single-cycle header of 64 bits, which minimally contains the transaction type (TTYPE) and the
physical address. Each transaction is identified or tagged with the issuing module’s master ID and a transaction ID, the
combination of which is unique for the duration of the transaction. The master ID and transaction ID are transmitted in
parallel to the main address and data bus, so no extra cycles are necessary for the transmission of the master ID and
transaction ID.

The Runway bus is a split-transaction bus. A read transaction is initiated by transmitting the encoded header, which
includes the address, along with the issuer’s master ID and a unique transaction ID, to all other modules. The issuing module
then relinquishes control of the bus, allowing other modules to issue their transactions. When the data is available, the
module supplying the data, typically memory, arbitrates for the bus, then transmits the data along with the master ID and
transaction ID so that the the original issuer can match the data with the particular request.

Write transactions are not split, since the issuer has the data that it wants to send. The single-cycle transaction header is
followed immediately by the data being written, using the issuer’s master ID and a unique transaction ID.
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Fig. 1. HP 9000 K-class server Runway bus block diagram.

COH = Coherency Signal Lines

Fig. 2 shows a processor issuing a read transaction followed immediately by a write transaction. Each transaction is tagged
with the issuing module’s master ID as well as a transaction ID. This combination allows the data response, tagged with the
same information, to be directed back to the issuing module without the need for an additional address cycle. Runway
protocol allows each module to have up to 64 transactions in progress at one time.

Arbitration

Address/Data

Master ID
Transaction ID

Arb Arb

Rd Wr D0 D1 D2 D3 D0 D1 D2 D3

2 2 2 2 2 2 2 2 2 2
4 5 5 5 5 5 4 4 4 4

Write
Transaction

Read
Return

Fig. 2. A processor issuing a read transaction followed immediately by a write transaction on the Runway bus.

Arbitration
To minimize arbitration latency without decreasing maximum bus frequency, the Runway bus has a pipelined, two-state
arbitration scheme in which the determination of the arbitration winner is distributed among all modules on the bus. Each
module drives a unique arbitration request signal and receives other modules’ arbitration signals. On the first arbitration
cycle, all interested parties assert their arbitration signals, and the memory controller drives the client-OP control signals
(see Table I) indicating flow control information or whether all modules are going to be preempted by a memory data
return. During the second cycle, all modules evaluate the information received and make the unanimous decision about who
has gained ownership of the bus. On the third Runway cycle, the module that won arbitration drives the bus.

With distributed arbitration instead of centralized arbitration, arbitration information only needs to flow once between bus
requesters. Using a centralized arbitration unit would require information to flow twice, first between the requester and the
arbiter and then between the arbiter and the winner, adding extra latency to the arbitration.
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Distributed arbitration on the Runway bus allows latency between arbitration and bus access to be as short as two cycles.
Once a module wins arbitration, it may optionally assert a special long transaction signal to extend bus ownership for a
limited number of cycles for certain transactions. To maximize bus utilization, arbitration is pipelined: while arbitration can
be asserted on any cycle, it is effective for the selection of the next bus owner two cycles before the current bus owner
releases the bus.

Table I
Client-OP Bus Signals

ANY_TRANS Any transaction allowed

NO_IO Any transaction allowed except CPU to I/O

RETURNS_ONLY Return or response transactions allowed

ONE_CYCLE Only one-cycle transactions allowed

NONE_ALLOWED No transactions allowed

MEM_CONTROL Memory module controls bus

SHARED_RETURN Shared data return

ATOMIC Atomic owner can issue any transaction; other
modules can only issue response transactions.

Arbitration priority is designed to maintain fairness while delivering optimal performance. The highest arbitration priority is
always given to the current bus owner through use of the long transaction signal, so that the current owner can finish
whatever transaction it started. The second highest priority is given to the memory controller for sending out data returns,
using the client-OP bus to take control of the Runway bus. Since the data return is the completion of a previous split read
request, it is likely that the requester is stalled waiting for the data, and the data return will allow the requester to continue
processing. The third highest arbitration priority goes to the I/O adapter, which requests the bus relatively infrequently, but
needs low latency when it does. Lowest arbitration priority is the processors, which use a round-robin algorithm to take
turns using the bus.

The arbitration protocol is implemented in such a way that higher-priority modules do not have to look at the arbitration
request signals of lower-priority modules, thus saving pins and reducing costs. A side effect is that low-priority modules can
arbitrate for the bus faster than high-priority modules when the bus is idle. This helps processors, which are the main
consumers of the bus, and doesn’t bother the memory controller since it can predict when it will need the bus for a data
return and can start arbitrating sufficiently early to account for the longer delay in arbitration.

Predictive Flow Control
To make the best use of the available bandwidth and greatly reduce complexity, transactions on the Runway bus are never
aborted or retried. Instead, the client-OP bus is used to communicate what transactions can safely be initiated, as shown in
Table I.

Since the Runway bus is heavily pipelined, there are queues in the processors, memory controllers, and I/O adapters to hold
transactions until they can be processed. The client-OP bus is used to communicate whether there is sufficient room in
these queues to receive a particular kind of transaction. Through various means, the memory controller keeps track of how
much room is remaining in these queues and restricts new transactions when a particular queue is critically full, meaning
that the queue would overflow if all transactions being started in the pipeline plus one more all needed to go into that queue.
Since the memory controller “predicts” when a queue needs to stop accepting new transactions to avoid overflow, this is
called predictive flow control.

Predictive flow control increases the cost of queue space by having some queue entries that are almost never used, but the
effective cost of queue space is going down with greater integration. The primary benefit of predictive flow control is greatly
reduced complexity, since modules no longer have to design in the capability of retrying a transaction that got aborted. This
also improves bandwidth since each transaction is issued on the bus exactly once.

A secondary benefit of predictive flow control is faster completion of transactions that must be issued and received in order,
particularly writes to I/O devices. If a transaction is allowed to be aborted, a second serially dependent transaction cannot
be issued until the first transaction is guaranteed not to be aborted. Normally, this is after the receiving module has had
enough time to look at the transaction and check the state of its queues for room, which is at least several cycles into the
transaction. With predictive flow control, the issuing module knows when it wins arbitration that the first transaction will
issue successfully, and the module can immediately start arbitrating for the second transaction.
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Coherency
The Runway bus provides cache and TLB (translation lookaside buffer) coherence with a snoopy protocol. The protocol
maintains cache coherency among processors and I/O modules with a minimum amount of bus traffic while also minimizing
the processor complexity required to support snoopy multiprocessing, sometimes at the expense of memory controller
complexity.

The Runway bus supports processors with four-state caches: a line may be invalid, shared, private-clean, or private-dirty. An
invalid line is one that is not present in cache. A line is shared if it is present in two or more caches. A private line can only
be present in one cache; it is private-dirty if it has been modified, private-clean otherwise.

Whenever a coherent transaction is issued on the bus, each processor or I/O device (acting as a third party) performs a
snoop, or coherency check, using the virtual index and physical address. Each module then sends its coherency check
status directly to the memory controller on dedicated COH signal lines. Coherency status may be COH_OK, which means that
either the line is absent or the line has been invalidated. A coherency status of COH_SHR means that the line is either already
shared or has changed to shared after the coherency check. A third possibility is COH_CPY, which means the third party has
a modified copy of the line and will send the line directly to the requester. Fig. 3 shows a coherent read transaction that hits
a dirty line in a third party’s cache.

Arbitration
Address/Data
Master ID
Transaction ID
CCC Proc0
CCC Proc1
CCC Proc2
CCC Proc3

Arb Arb

3 3 3 3 3 3

OK
CPY

CCC
C2C

7 7 7 7 7 7

OK
OK

Rd C2C D0 D1 D2 D3

=  Cache Coherency Check
=  Cache-to-Cache Transfer

Fig. 3. A coherent read transaction hits a dirty line in a third party’s cache.

After the memory controller has received coherency status from every module, it will return memory data to the requester if
the coherency status reports consist of only COH_OK or COH_SHR. If any module signaled COH_SHR, the memory controller
will inform the requester to mark the line shared on the client-OP lines during the data return. If any module signals
COH_CPY, however, the memory controller will discard the memory data and wait for the third party to send the modified
cache line directly to the requester in a C2C_WRITE transaction. The memory controller will also write the modified data in
memory so that the requester can mark the line clean instead of dirty, freeing the requester (and the bus) from a subsequent
write transaction if the line has to be cast out. Fig. 4 shows cache state transitions resulting from CPU instructions. Fig. 5
shows transitions resulting from bus snoops.

Private-Clean

Private-Dirty

Line State at Other CPU:
Invalid
Private-Dirty

Other CPU Action:
Stay Invalid
Invalidate

Bus Signal:
COH_OK
COH_CPY,

C2C_Transfer

Line State at Other CPU:
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Private-Clean

Other CPU Action:
Stay Shared
Make Shared

Bus Signal:
COH_SHR
COH_SHR

Line State at Other CPU:
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Private-Clean
Invalid
Private-Dirty

Other CPU Action:
Invalidate
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Bus Signal:
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C2C_Transfer

Shared

Invalid

Load

Store

Load

Store

Load or Store

Load Miss –> Read_Shared_or_Private Transaction

Store Miss –> Read_Private Transaction

Fig. 4. Cache state transitions resulting from CPU instructions. The lines with arrows show the transitions of

cache state at the originating CPU. The text near each line describes the conditions at other CPUs that caused the

transition, as well as the effect on the other CPU’s state. For example, from the invalid state, a load miss will al-

ways cause a Read_Shared_or_Private transaction. The final state for the load miss will be either private-clean (if

another CPU had the cache line invalid or private-dirty) or shared (if another CPU had the cache line shared or

private-clean).
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The Runway coherency protocol supports multiple outstanding coherency checks and allows each module to signal
coherency status at its own rate rather than at a fixed latency. Each module maintains a queue of coherent transactions
received from the bus to be processed in FIFO order at a time convenient for the module. As long as the coherency response
is signaled before data is available from the memory controller, delaying the coherency check will not increase memory
latency. This flexibility allows CPUs to implement simple algorithms to schedule their coherency checks so as to minimize
conflicts with the instruction pipeline for cache access.

Private-Clean

Private-Dirty

Shared

Invalid

Read_Shared_or_Private

Read_Private COH_CPY

COH_CPY

Read_Private COH_OK

Read_Private COH_OK

Read_Shared_or_Private

Read_Private COH_OK

COH_OK

Transaction: Bus Signal:

Read_Shared
_or_Private
  COH_SHR

Read_Shared
_or_Private
  COH_SHR

Fig. 5. Cache state transitions resulting from bus coherency checks (snoops).

Virtual Cache Support
Like all previous HP multiprocessor buses, virtually indexed caches are supported by having all coherent transactions also
transmit the virtual address bits that are used to index the processors’ caches. The twelve least-significant address bits are
the offset within a virtual page and are never changed when translating from a virtual to a physical address. Ten virtual
cache index bits are transmitted; these are added to the twelve page-offset bits so that virtual caches up to 4M bytes deep
(22 address bits) can be supported.

Coherent I/O Support
Runway I/O adapters take part in cache coherency, which allows more efficient DMA transfers. Unlike previous systems, no
cache flush loop is needed before a DMA output and no cache purge is needed before DMA input can begin. The Runway
bus protocol defines DMA write transactions that both update memory with new data lines and cause other modules to
invalidate data that may still reside in their caches.

The Runway bus supports coherent I/O in a system with virtually indexed caches. I/O adapters have small caches and both
generate and respond to coherent transactions. The I/O adapters have a lookup table (I/O TLB) to attach virtual index
information to I/O reads and writes, for both DMA accesses and control accesses. For more information see Article 6.

Coherent I/O also reduces the overhead associated with the load-and-clear semaphore operation. Since all noninstruction
accesses in the system are coherent, semaphore operations are performed in the processors’ and I/O adapters’ caches. The
processor or I/O adapter gains exclusive ownership and atomically performs the semaphore operation in its own cache. If
the line is already private in the requester’s cache, no bus transaction is generated to perform the operation, greatly
improving performance. The memory controller is also simplified because it does not need to support semaphore operations
in memory.

The Runway bus has both full-line (32-byte) and half-line (16-byte) DMA input transactions, called WRITE_PURGE and
WRITE16_PURGE. Both transactions write the specified amount of data into memory at the specified address, then invalidate
any copies of the entire line that may be in a processor’s cache. The full-line WRITE_PURGE is the accepted method for DMA
input on systems that have coherent I/O, if the full line is being written. The half-line WRITE16_PURGE is used for 16-byte
writes if enabled via the fast DMA attribute in the I/O TLB. Software programs the I/O TLB with the fast attribute if it knows
that both halves of the line will be overwritten by the DMA. Otherwise, if the I/O TLB does not specify the fast attribute, the
I/O adapter uses the slower read private, merge, write back transaction, which will safely merge the DMA data with any
dirty processor data. The use of WRITE16_PURGE greatly increases DMA input bandwidth for older, legacy I/O cards that use
16-byte blocks.

http://www.hp.com/hpj/feb96/fb96a6.html


February 1996 Hewlett-Packard Journal       6

Design Trade-offs
To get the best performance from a low-cost interconnect, the bus designers chose a time multiplexed bus, so that the same
pins and wires can be used for both address and data. Separate address and data buses would have increased the number of
pins needed by about 50%, but would have increased usable bandwidth by only 20%. Since the number of pins on a chip has
a strong impact on chip cost, the time multiplexed address and data bus gives us the best trade-off. A smaller number of
pins is also important to allow the bus interface to be included on the processor chip instead of requiring one or more
separate transceiver chips.

To get the best bandwidth, the designers targeted for the highest bus frequency that could be achieved without requiring
dead cycles for bus turnaround. The use of dead cycles would have allowed a higher nominal frequency, but dead cycles
would have consumed 20 to 30 percent of the bandwidth, for a net loss.

Bandwidth Efficiency
The Runway bus has a rated raw bandwidth of 960 Mbytes/second, which is derived by taking the width of the bus and
multiplying by the frequency: 64 bits � 120 MHz � 8 bits/byte = 960 megabytes/second. However, raw bandwidth is an
almost meaningless measure of the bus, since different buses use the raw bandwidth with greatly differing amounts of
efficiency. Instead, buses should be compared on effective or usable bandwidth, which is the amount of data that is
transferred over time using normal transactions.

To deliver as much of the raw bandwidth as possible as usable bandwidth, the designers minimized the percentage of the
cycles that were not delivering useful data. Transaction headers, used to initiate a transaction, are designed to fit within a
single cycle. Data returns are tagged with a separate transaction ID field, so that data returns do not need a return header.
Finally, electrically, the bus is designed so that dead cycles are not necessary for master changeover. The only inherent
overhead is the one-cycle transaction header.

For 32-byte lines, both read and write transactions take exactly five cycles on the bus: one cycle for the header and four
cycles for data. It doesn’t matter that the read transaction is split. Thus, for the vast majority of the transactions issued on
the bus, 80% of the cycles are used to transmit data. The effective bandwidth is 960 Mbytes/s � 80% = 768 Mbytes/s, which is
very efficient compared to competitive buses.

In addition, the Runway bus is able to deliver its bandwidth to the processors that need the bandwidth. Traditional buses
typically allow each processor to have only a single outstanding transaction at a time, so that each processor can only get at
most about a quarter of the available bandwidth. Runway protocol allows each module—processor or I/O adapter—to have
up to 64 transactions outstanding at a time. The PA 7200 processor uses this feature to have multiple outstanding instruction
and data prefetches, so that it has fewer stalls as a result of cache misses. When a processor really needs the bandwidth, it
can actually get the vast majority of the available 768-Mbyte/s bandwidth.

High Frequency
The Runway protocol is designed to allow the highest possible bus frequency for a given implementation. The protocol is
designed so that no logic has to be performed in the same cycle that data is transmitted from one chip to another chip. Any
logic put into the transmission cycle would add to the propagation delay and reduce the maximum frequency of the bus.
From a protocol standpoint, for this to work, each chip will receive bus signals at the end of one cycle, evaluate those
signals in a second cycle and decide what to transmit, then transmit the response in the third cycle.

To maximize implementation frequency, the Runway bus project took a system-level design approach. All modules on the
bus and the bus itself were designed together for optimal performance, instead of designing an interface specification
permitting any new module to be plugged in as long as it conforms to the specification. We achieved a higher-performance
system with the system approach than we could have achieved with an interface specification.

The I/O driver cells for the different modules were designed together and SPICE-simulated iteratively to get the best
performance. Since short distances are important, the pinouts of the modules are coordinated to minimize unnecessary
crossings and to minimize the worst-case bus paths. See the sidebar: Runway Bus Design Considerations for more
information on the electrical design of the Runway bus.

The bus can be faster if there are fewer modules on it, since there is less total length of bus and less capacitance to drive.
The maximum configuration is limited to six modules—four processors, a dual I/O adapter, and a memory controller—to
achieve the targeted frequency of 120 MHz.

Another optimization made to achieve high bus frequency is the elimination of wire-ORs. By requiring that only one module
drive a signal in any cycle, some traditionally bused signals that require fast response, such as cache coherency check
status, are duplicated, one set per module. Other bused signals that do not require immediate response (e.g., error signals)
are more cost-effectively transformed into broadcast transactions. Adapting the Runway protocol to eliminate wire-ORs
allowed us to boost the bus frequency by 10 to 20 percent.

http://www.hp.com/hpj/feb96/fb96a2sb.html
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Runway Bus Electrical Design

Considerations

The Runway bus’s high bandwidth is a result of the strategies adopted for its electrical design. These included an efficient
data transfer scheme, a simple clock system with low clock skew, a compact bus topology, and a termination strategy that
eliminates dead cycles when changing bus masters.

Data Transfer Scheme
The simple data transfer strategy, shown in Fig. 1, allows most of the cycle to be used to transfer data. An edge-triggered
Runway pad driver is enabled by the rising edge of the on-chip Runway clock, RCK, causing the data to be driven onto the
external bus. This driven data is then latched one cycle later at the receiving devices by the next rising edge of the receiver’s
on-chip Runway clock. On each Runway VLSI chip, the same physical clock edge is used to trigger the signal driver and
latch the data from the previous cycle in the signal receiver.

The following two equations express timing constraints that must be met for proper operation:

Setup time equation:  DRIVEmax + SKEW + SU v Tperiod

Hold time equation:   SKEW + HOLD v DRIVEmin,

where DRIVE is the delay from the rising edge of RCK at the driver to the time when the data is valid at the receiver, SU is the
receiver setup time, HOLD is the receiver hold time, SKEW is the maximum skew of the clock signal (RCK) between the driver
of one chip and the receiver of another, and Tperiod is the clock period.

RCK

DATA

Receiver Latches Here

DRIVE

Tperiod

Data Valid at Pin

DRIVEmax min

SU HOLD

Driver Drives Here

Fig. 1. The data transfer timing strategy for the Runway bus allows most of the cycle to be used to transfer data.

Clock Path
The Runway clock orchestrates the transfer of information among the components on the bus. The path of the Runway
clock to the driver and receiver circuits can be divided into three components: on-board clock generation and distribution to
the VLSI chip inputs, on-chip clock reception and buffering, and on-chip clock distribution to the Runway driver and
receiver circuits.

Skew can be introduced by any of these components. Inspection of the setup and hold time equations reveals that it is
desirable to reduce skew to as small a value as possible.

The clock path begins at the custom VLSI clock generation chip. This chip generates several differential pairs of clock
outputs, one per Runway VLSI chip. By using one chip as the source of the clock signals in this system, the output-to-output
skew was kept very small.

Each dedicated clock pair is carefully routed on the printed circuit board to its Runway VLSI chip. The traces are adjusted
in length so that the arrival time of each clock at the pins of the Runway VLSI chips can be accurately placed with respect to
the others. Because of known timing differences in the paths of the clock from input pin to driver and receiver circuits for
each type of Runway VLSI chip, it is useful to be able to tune the clocks in this manner. More will be said about this later.

Each differential clock signal is received at each chip by a receiver/buffer circuit that transforms the signal into a
single-ended signal RCK with normal CMOS voltage levels. This RCK signal then fans out to all the Runway signal driver and
receiver circuits located at the pads and the associated interface circuitry located in the core of the chip. Since the interface
circuitry is similar on all three types of Runway VLSI chips, the capacitive loading on RCK is nearly identical for all three
types, which ensures that the delay through the clock buffer is similar for all Runway VLSI chips.

The RCK signal is routed using various techniques to reduce the distribution delay and thus the variation in delay. The clock
receiver/buffer bit slice is centrally placed in the interface so that the total distance the RCK signal must travel on-chip to the
farthest signal bit slice is minimized. This clock is routed in wide metal so that the delay along this line is low. The signal pad
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ordering in the Runway interfaces for all of the Runway VLSI chips is nearly identical. This ensures that the distance from
the clock buffer to a signal pad is the same for all of the Runway VLSI chips.

The goal in the design of the Runway clock system was to have the on-chip clock RCK arrive at the corresponding signal
driver or receiver at the same time at each Runway device. Since the CPU is fabricated in CMOS14, a faster technology than
the CMOS26 process used for the I/O adapter and memory controller chips, the on-board clock signal to the CPU is delayed
to account for this known timing difference. Thus the clock skew is only a function of the CMOS26 parameters, which keeps
the skew to a minimum.

Overall, the total chip-to-chip clock skew on RCK at the signal driver and receiver circuits is under 1.1 ns worst-case.

Bus Topology
The components on the bus are designed to be close together to limit the capacitive and inductive load on each Runway
signal line. The setup and hold time equations can be used to determine how best to lay out the signal path. The
requirements of the two equations sometimes conflict. For example, the setup time equation wants us to minimize DRIVEmax
and the hold time equation wants us to maximize DRIVEmin. In plain English, we want an interconnect scheme that minimizes
the overall trace length while maintaining the greatest separation between components.

An ideal connection topology would be a star with the devices placed at the tips of the star as shown in Fig. 2a. Because of
manufacturing difficulties with this topology, the modified star shape shown in Fig. 2b, which fits comfortably using
standard printed circuit board technology, was chosen. As the figure suggests, the main trunk of the Runway bus consists of
a standard printed circuit trace running along a backplane with at most four daughter cards attached to the backplane, two
per side. Each daughter card will hold one CPU. The memory controller and the I/O adapter reside on the backplane along
with the clock generation circuitry. This connection scheme interconnects six Runway devices with less than 9 inches of
total printed circuit trace for the longest signal with no two devices farther apart than 4.5 inches.

CPU 3

CPU 1 CPU 2

I/O
Adapter

CPU 4

Memory
Controller

I/O
Adapter

Memory
Controller

CPU 1

CPU 2

CPU 3

CPU 4

(a)

(b)

Fig. 2. (a) Star topology. (b) Modified star topology of the Runway bus.

Termination Strategy
A parallel termination strategy using external resistors is usually used for high-speed buses so that incident wave switching
can be employed, that is, the receiver will switch (receive) when it detects the first or incident wave propagating down the
transmission line. In this style of termination, the driver usually only needs to drive in one direction. The termination
resistor drives the bus the other way when the driver tristates or turns off. While the driver is on, direct current flows
constantly. When the driver turns off, the bus is disturbed by the change of current though the inductive traces and bond
wires. This disturbance sends a wave propagating down the transmission line in the direction opposite to the direction of
propagation when the driver turns on. A special frequency-limiting case is the master changeover, when a driver at the end
of the bus starts to drive the same value that was driven by the master at the other end of the bus in the previous cycle. In



February 1996 Hewlett-Packard Journal       3

this case, constructive interference of the two propagating waves may cause the bus to take a long time to settle. It is not
uncommon to insert a dead cycle in the protocol to allow extra time for the bus to settle when the bus changes masters.

On a series-terminated bus, the bus driver has the ability to drive in both directions. The on-impedance of the driver
transistor acts as the termination resistor. The driver transistor will turn on and drive the bus to the desired level. Near the
end of the cycle when the bus is nearing its final value, the drivers will be sourcing or sinking only a small fraction of their
peak currents at the start of the cycle.

Because of this, when the driver is disabled at the end of the cycle, there is very little disturbance in the line. This makes it
possible to have another driver master the bus in the very next cycle. However, because the on-impedance of the driver is
not well-controlled, the receiver must usually wait to receive the reflected wave, which increases the bus propagation delay.

Runway bus topology is very compact. This means that the time difference between the arrivals of the incident and reflected
waves is relatively small compared to the bus cycle time. Had we employed parallel termination on the Runway bus, we
might have been able to increase the frequency of the bus by about 20%. Since the dead cycle would have cost us about 20 to
30 percent in bandwidth, we decided to use series termination instead.

Other advantages of series-terminated buses include good tolerance to impedance mismatches and long stubs and no dc
power dissipation. Also, we saved valuable board space by not having to place resistors on each Runway bus signal.

Simulated and Characterized Performance
Early in the Runway bus simulations, it became clear that the result would be dependent not only on which driver drove the
bus, but also on the current state of the bus. The state of the bus is precisely determined by the history of drivers driving the
bus along with the starting condition of the bus. Since the current state of the bus is mostly determined by who was last
driving it, all possible pairs of successive bus transactions by two drivers were simulated. The symmetry of the bus and our
ability to predict and eliminate combinations that would not be worst-case helped cut down the number of slow-case
simulations to 32. A network of fast HP 9000 Model 720 and 750 workstations was able to run these simulations, each of
which normally takes one machine about one hour to run, in about 4 hours.

The SPICE model to simulate the worst case was in constant revision as more and more details from the design were
implemented. The final model had artwork-extracted transistor models for the signal driver and receiver for each Runway
VLSI chip and a detailed schematic model for each package trace and board connector. The printed circuit traces were
modeled using SPICE transmission-line primitives.

The final simulated worst-case bus frequency came in at 152 MHz using a fully loaded Runway bus. The characterized
frequency of the bus over the extremes of process, temperature, and voltage showed operation of at least 140 MHz. The
maximum characterization frequency was limited to 140 MHz because of the limitations of other system components. These
results gave us the confidence to conclude that the Runway bus will work at the 120-MHz frequency goal with sufficient
manufacturing margin.
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Design of the HP PA 7200 CPU

The PA 7200 processor chip is specifically designed to give
enhanced performance in a four-way multiprocessor system
without additional interface circuits. It has a new data cache
organization, a prefetching mechanism, and two integer ALUs for
general integer superscalar execution.

by Kenneth K. Chan, Cyrus C. Hay, John R. Keller, Gordon P. Kurpanek, Francis X. Schumacher, and

Jason Zheng

Since 1986, Hewlett-Packard has designed PA-RISC1,2 processors for its technical workstations and servers, commercial
servers, and large multiprocessor transaction processing machines.3-9 The PA 7200 processor chip is an evolution of the
high-performance single-chip superscalar PA 7100 design.

The PA 7200 incorporates a number of enhancements specifically designed for a glueless four-way multiprocessor system
with increased performance on both technical and commercial applications.10-11 On the chip is a multiprocessor system bus
interface which connects directly to the Runway bus described in Article 2. The PA 7200 also has a new data cache
organization, a prefetching mechanism, and two integer ALUs for general integer superscalar execution. The PA 7200
artwork was scaled down from the PA 7100’s 0.8-micrometer HP CMOS26B process for fabrication in a 0.55-micrometer HP
CMOS14A process.

Fig. 1 shows the PA 7200 in a typical symmetric multiprocessor system configuration and Fig. 2 is a block diagram of the PA
7200.
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Processor Module
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Converter
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Fig. 1. The PA 7200 processor in a typical symmetric multiprocessor system configuration.

Processor Overview
The PA 7200 VLSI chip contains all of the circuits for one processor in a multiprocessor system except for external cache
arrays. This includes integer and floating-point execution units, a 120-entry fully associative translation lookaside buffer
(TLB) with 16-block translation entries and hardware TLB miss support, off-chip instruction and data cache interfaces for
up to 2M bytes of off-chip cache, an assist cache, and a system bus interface. The floating-point unit in the PA 7200 is the
same as that in the PA 7100 and retains the PA 7100’s 2-cycle latency and fully pipelined execution of single and
double-precision add, subtract, multiply, FMPYADD, and FMPYSUB instructions. The instruction cache interface and integer
unit are enhanced for superscalar execution of integer instruction pairs. The bus interface and the assist cache are
completely new designs for the PA 7200.

In addition to the performance features, the PA 7200 contains several new architectural features for specialized
applications:
� Little endian data format support on a per-process basis

� Support for uncacheable memory pages

� Increased memory page protection ID (PID) size

� Load/store “spatial locality only” cache hint

� Coherent I/O support.

http://www.hp.com/hpj/feb96/fb96a2.html
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Fig. 2. Block diagram of the PA 7200 CPU.
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The CPU is fabricated in Hewlett-Packard’s CMOS14A process with 0.55-micrometer devices and three-level metal
interconnect technology. The processor chip is 1.4 by 1.5 cm in size, contains 1.3 million transistors, and is packaged in a
540-pin ceramic PGA. IEEE 1149.1 JTAG-compliant boundary scan protocol is included for chip test and fault isolation. Fig.
3 is a photomicrograph of the PA 7200 CPU chip.

Instruction Execution
A key feature of the PA 7100 that is retained in the PA 7200 is an execution pipeline highly balanced for both high-frequency
operation and very few (compared to most current microprocessors) pipeline stall cycles resulting from data, control, and
fetch dependencies.12 The only common pipeline stall penalties are a one-cycle load-use interlock for any cache hit, a
one-cycle penalty for the immediate use of a floating-point result, a zero-to-one-cycle penalty for a mispredicted branch, and
a one-cycle penalty for store-load combinations. The PA 7200 improves on the PA 7100 pipeline by removing the penalty for
store-store combinations.

Fig. 3. PA 7200 CPU chip.
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This was achieved by careful timing of off-chip SRAMs, which are cycled at the full processor frequency. Removal of the
store-store penalty is particularly helpful for code that has bursts of register stores, such as the code typically found at
procedure calls and state saves.

The PA 7200 features an integer superscalar implementation geared to high-frequency operation similar to the PA 7100LC
processor.3 In a superscalar processor, more than one instruction can be executed in a single clock cycle. When two
instructions are executed each cycle, this is also referred to as bundling or dual-issuing. In previous PA 7100 processors,
only a floating-point operation could be paired with an integer operation. The PA 7200 adds the ability to execute two
integer operations per cycle. This will benefit many applications that do not have intensive floating-point operations. To
support this integer superscalar capability, the PA 7200 adds a second integer ALU, two extra read ports and one extra write
port in the general register stack, a new predecoding block, a new instruction bus, additional register bypassing circuits, and
associated control logic.

Instructions are classified into three groups: integer operations, loads and stores, and floating-point operations. The PA 7200
can execute a pair of instructions in a single cycle if they are from different groups or if they are both from the integer
operation group. Branches are a special case of integer operations; they can execute with the preceding instruction but not
with the succeeding instruction. Double-word alignment is not required for instructions executing in the same cycle. As in
the PA 7100, only floating-point operations can bundle across a cache line or page boundaries. The PA 7200 can also execute
two instructions writing to the same target register in a single cycle.

The PA 7200 contains three instruction buses that connect the instruction cache interface to two integer ALUs and a
floating-point unit. As in the PA 7100, an on-chip double-word instruction buffer assists the bundling of two instructions that
may not be double-word aligned. On every cycle, one or two instructions can come from any of four sources (even or odd
instructions from the cache, or even or odd instructions from the on-chip buffer) and can go to any of the three destination
buses.

The process by which multiple instructions are dispatched to different instruction buses leading to corresponding
execution units is called steering. The PA 7200 has a very aggressive timing budget for steering and instruction decoding
(done in less than one processor cycle); therefore, the steering logic must be fast. In addition, on every cycle, the control
logic needs to track which one or two of the three instruction buses contain valid instructions as well as the order of
concurrently issued instructions. To avoid having superscalar steering and execution decode logic degrade the CPU
frequency, six predecode bits are allocated in the instruction cache for each double word. Data dependencies and resource
conflicts are checked and encoded in predecode bits as instructions are moved from memory into the cache, when timing is
more relaxed. These six predecode bits are carefully designed so that they are optimal for both the steering circuits and the
control logic for proper pipelined execution. Thanks to the optimized design and implementation of these predecode bits
and the associated steering circuits and control logic, this path is not a speed-limiting path for the PA 7200 chip and does not
obstruct its high-frequency operation.

To minimize area, shift-merge and test condition units are not duplicated in the second ALU. Thus shifts, extracts, deposits,
and instructions using the test condition block are limited to one per cycle. Also, instructions with test conditions cannot be
bundled with integer operations or loads or stores as their successors. A modern compiler can minimize the effect of these
few superscalar restrictions through code scheduling, thereby allowing the processor to exploit much of the
instruction-level parallelism available in application code to achieve a low average CPI (cycles per instruction).

Data Cache Organization
Fig. 4 shows the PA 7200’s data cache organization. The chip contains an interface to up to 1M bytes of off-chip direct
mapped data cache consisting of industry-standard SRAMs. The off-chip cache is cycled at the full processor frequency and
has a one-cycle latency.

The chip also includes a small fully associative on-chip assist cache. Two pipeline stages are associated with address
generation, translation, and cache access for both caches, which results in a maximum of a one-cycle load-use penalty for a
hit in either cache. The on-chip assist cache combined with the off-chip cache together form a level-1 cache. Because this
level-1 cache is accessed in one processor cycle and supports a large cache size, no level-2 cache is supported. The ability to
access the large off-chip cache with low latency greatly reduces the CPI component associated with cache-resident memory
references. This is particularly helpful for code with large working data sets.

The on-chip assist cache consists of 64 fully associative 32-byte cache lines. A content-addressable memory (CAM) is used
to match a translated real line address with each entry’s tag. For each cache access, 65 entries are checked for a valid
match: 64 assist cache entries and one off-chip cache entry. If either cache hits, the data is returned directly to the
appropriate functional unit with the same latency. Aggressive self-timed logic is employed to achieve the timing
requirements of the assist cache lookup.
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Fig. 4. PA 7200 data cache organization.

Lines requested from memory as a result of either cache misses or prefetches are initially moved to the assist cache. Lines
are moved out of the assist cache in first-in, first-out order. Moving lines into the assist cache before moving them into the
off-chip cache eliminates the thrashing behavior typically associated with direct mapped caches. For example, in the vector
calculation:

    for i: = 0 to N do
    A[i] : = B[i] + C[i] + D[i]

if elements A[i], B[i], C[i], and D[i] map to the same cache index, then a direct mapped cache alone would thrash on each
element of the calculation. This would result in 32 cache misses for eight iterations of this loop. With an assist cache,
however, each line is moved into the cache system without displacing the others. Assuming sequential 32-bit data elements,
eight iterations of the loop causes only the initial four cache misses.

Larger caches do not reduce this type of cache thrashing. While modern compilers are often able to realign data structures
to reduce or eliminate thrashing, sufficient compile time information is not always available in an application to make the
correct optimization possible. The PA 7200’s assist cache eliminates cache thrashing extremely well with minimal hardware
and without compiler optimizations.

Lines that are moved out of the assist cache can conditionally bypass the off-chip cache and move directly back to memory.
A newly defined spatial locality only hint can be specified in load and store instructions to indicate that data exhibits
spatial locality but not temporal locality. A data line fetched from memory for an instruction containing the spatial locality
hint is moved into the assist cache like all other lines. Upon replacement, however, the line is flushed back to memory
instead of being moved to the off-chip cache. This mechanism allows large amounts of data to be processed without
polluting the off-chip cache. Additionally, cycles are saved by avoiding one or two movements of the cache line across the
64-bit interface to the off-chip cache.

The assist cache allows prefetches to be moved into the cache system in a single cycle. Prefetch returns are accumulated
independently of pipeline execution. When the complete line is available, one data cache cycle is used to insert the line into
the on-chip assist cache. If an instruction that is not using the cache is executing, no pipeline stalls are incurred.
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Because the assist cache is accessed using a translated physical address, it adds an inherently critical speed path to the chip
microarchitecture. An assist cache access consists of virtual cache address generation, translation lookaside buffer (TLB)
lookup to translate the virtual address into a physical address, and finally the assist cache lookup. The TLB lookup and
assist cache lookup need to be completed in one processor cycle or 8.3 ns for 120-MHz operation. To meet the speed
requirements of this path a combination of dynamic and self-timed circuit techniques is used.

The TLB and assist cache are composed of content-addressable memory (CAM) structures, which differ from more typical
random-access memory (RAM) structures in that they are accessed with data, which is matched with data stored in the
memory, rather than by an index or address. A typical RAM structure can be broken into two halves: an address decoder
and a memory array. The input address is decoded to determine which memory element to access. Similarly, a CAM has two
parts: a match portion and a memory array. In the case of the assist cache, the match portion consists of 27-bit comparators
that compare the stored cache line tag with the translated physical address of the load or store instruction. When a match is
detected by one of the comparators, then that comparator dumps the associated cache line data.

Fig. 5 shows the timing of an access to the TLB and assist cache.
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Fig. 5. PA 7200 TLB and assist cache timing.

This single 8.3-ns clock cycle path is broken into multiple subsections using self-timed circuits. An access begins when the
single-ended virtual address is latched and converted to complementary predischarged values VADDR and VADDR  in the TLB
address buffer on the rising edge of CK. These dual-rail signals are then used to access the CAM array. A dummy CAM array
access, representing the worst-case timing through the CAM array, is used to initiate the TLB RAM access. If any of the CAM
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entries matches the VADDR , then the completion of the dummy CAM access, represented by TLB READ_CK , enables the TLB
read control circuits to drive one of the TLB RAM read lines. The precharged RAM array is then read and a differential
predischarged physical address is driven to the assist cache. A similar access is then made to the assist cache CAM and
RAM structures to produce data on the rising edge of CK. A precharged load aligner is used to select the appropriate part of
the 256-bit cache line to drive onto the data bus and to perform byte swapping for big-to-little-endian data format
conversion. Although this path contains tight timing budgets, careful circuit design and physical layout ensure that it does not
limit the processor frequency.

The basic structure of the external cache remains unchanged from the PA 7100 CPU. Separate instruction (I) and data (D)
caches are employed, each connected to the CPU by a 64-bit bidirectional bus. The cache is virtually indexed and physically
tagged to minimize access latency. The I-cache data and tag are addressed over a common address bus, IADH. The D-cache
data has a separate address bus, DADH, and the D-cache tag has a separate address bus, TADH. Used in conjunction with an
internal store buffer for write data, the split D-cache address allows higher-bandwidth stores to the D-cache. Instead of a
serial read-modify-write, stores can be pipelined so that TADH can be employed for the tag read of a new store instruction
while DADH is used to write the data from the previous store instruction.

As in the PA 7100 CPU, the PA 7200 CPU cache interface is tuned to work with asynchronous SRAMs by creating special
clock signals for optimal read and write timing. The cache is read with a special latch edge that allows wave pipelining, that
is, a second read is launched before the first read is actually completed. The cache is written using two special clocks that
manipulate the write enable and output enable SRAM controls for a minimum total write cycle time.

The design team worked closely with several key SRAM vendors to develop a specification for a 6-ns SRAM with enhanced
write speed capabilities. These new SRAMs allow both of the caches to operate at the CPU clock frequency. The CPU can be
shipped with equal-sized instruction and data caches of up to 1M bytes each. As in the PA 7100 CPU, a read can be finished
in one clock cycle. However, to match the bandwidth of the Runway bus and to increase the performance of store-intensive
applications, a significant timing change was made to improve the bandwidth for writes to the cache. The PA 7200 CPU
achieves a quasi-single-cycle write: a series of N writes requires N+1 cycles. The one-cycle overhead is required for turning
the bus around from read to write, that is, one cycle is required to turn off the SRAM drivers and allow the CPU drivers to
take over. No penalty is incurred in transitioning from write to read.

Prefetching Mechanisms
A significant amount of execution time is spent waiting for data or instructions to be returned from memory. In an HP 9000
K-class system running transaction processing applications, an average of about one cycle per instruction can be attributed
to the processor waiting for memory. The total CPI for such an application is about 2. Execution time can therefore be
greatly reduced by reducing the number of cycles the processor spends waiting for memory. The PA 7200 incorporates
hardware and software prefetching mechanisms, which initiate memory requests before the data or instructions are used.

Instruction Prefetching. The PA 7200 implements an efficient instruction prefetch algorithm. Instruction fetch requests are
issued speculatively ahead of the instruction execution stream. Multiple instruction prefetch requests can be in flight to the
memory system simultaneously. Issuing multiple prefetches ahead of the execution stream works well when linear code
segments are initially encountered. This instruction prefetching scheme yields a 9% performance speedup on transaction
processing benchmarks.

Data Prefetching. The PA-RISC instruction set includes a class of instructions that modify the base value in a general register
by an immediate displacement or general register index value. An example is LDWX,m r1(r2),r3. The LDWX (load word
indexed) instruction with a modify completer (,m) loads the value at the address contained in register r2 into register r3, and
then adds r1 to r2 (i.e., load r2 –> r3; r1 + r2 –> r2). The PA 7200 can use this class of instructions to speculate what data may
soon be accessed by the code stream. If the load r2 in the above example is a cache miss, a prefetch is issued to the address
calculated by the base register modification (r1 + r2). The PA 7200 uses this base register modification to speculate where a
future data reference will occur. For example, if r1 contains line 0x40 and r2 contains line 0x100 and no lines are initially in
the cache, then this instruction initiates a request for line 0x100 in response to the cache miss and line 0x140 is prefetched.
If the line 0x140 is later used, some or all of the cache miss penalty is avoided.

When a line is prefetched, it is moved into the assist cache and tagged as being a prefetched line. When a prefetched line is
later referenced by the code stream, another prefetch is launched. Continuing with the above example, if this load
instruction were contained in a loop, on the first iteration of the loop lines 0x100 and 0x140 would be requested from
memory. On the second iteration line 0x140 is referenced. The assist cache detects this as the first reference to a prefetched
line and initiates a prefetch of line 0x180. This allows memory requests to stay ahead of the reference stream, reducing the
stall cycles associated with memory latency.

The PA 7200 allows four data prefetch requests to be outstanding at one time. These prefetches can be used for either
prefetches along multiple data reference streams or farther ahead on one data reference stream. Returning to the vector
example,

    for i : = 0 to N do
    A[i] : = B[i] + C[i] + D[i]
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each new cache line entered will cause four new prefetch requests to be issued: one for each vector. On the other hand, if
the processor were doing a block copy:

    for i : = 0 to N
    A[i] : =  B[i]

then it could prefetch two lines ahead of each reference stream.

Reducing Average Memory Access Time
A number of features have been combined in the PA 7200 to minimize the average memory access time (the average number
of cycles used for a memory reference).13 These features together provide excellent performance speedups on a number of
applications that stress the memory hierarchy. Fig. 6 compares the performance of the PA 7200 and the PA 7100 on a
number of technical benchmarks. To minimize the average memory access time associated with cache hits, the large
low-latency off-chip cache from the PA 7100 design has been retained and enhancements made to allow single-cycle stores.
The PA 7200 improves on the PA 7100 by reducing cache misses by minimizing compulsory, capacity, and conflict cache
misses.

PA7100 @99MHz

2.0�

PA7200 @120MHz

2.1�

2.2�

1.8�

gausian90 naskar swm256 tomcatvsu2coransys

1.5�
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Fig. 6. A number of features that minimize the average memory access time allow the PA 7200 CPU

to outperform its predecessor the PA 7100 on technical benchmarks.

The PA 7200 reduces conflict misses by adding effective associativity to entries of the main cache. This is done without the
overhead required for a large multiset associative cache. Traditionally caches have been characterized as direct mapped,
multiset associative, or fully associative. The PA 7200 assist cache effectively adds dynamically adjusted associativity to
main cache entries. As miss lines are brought into the assist cache, the entries with the same cache index mapping in the
main cache are not immediately replaced. This allows multiple cache lines with the same index to reside in “the cache” at
the same time. All assist cache entries can be filled with lines that map to the same off-chip cache index, or they can be
filled with entries that map to various indexes. This eliminates the disastrous thrashing that can occur with a direct mapped
cache, as discussed earlier.

The PA 7200 reduces compulsory cache misses by prefetching lines that are likely to be used. When the software has the
information necessary at compile time to anticipate what data is needed, the base register modification class of load and
store instructions can be used to direct prefetching. If no specific direction is added to code or if old code is being run, then
base register modifying loads and stores can still be used by the hardware to do effective prefetching. The processor can
also be configured to use loads and stores that do not modify base registers to initiate speculative requests. Because
memory bandwidth is limited, care was taken to minimize the amount of bad prefetching while maximizing the speedup
realized by issuing memory requests speculatively. Both old code traces and new compiler optimizations were investigated
to determine the best set of prefetching rules.

In addition to the large caches supported by the PA 7200, capacity misses are reduced by selectively allocating lines to the
off-chip cache if they benefit from being moved to the off-chip cache. More effective use can be made of a given cache
capacity by only moving data that exhibits temporal locality to the off-chip cache. The assist cache provides an excellent
location for use-once data. The spatial locality only (,SL) hint associated with load and store instructions allows code to
identify which data is use-once (or simply too large to be effectively cached), thereby reducing capacity misses. The ,SL hint
is encoded in previously reserved load and store instruction fields. Large analytic applications and block move and clear
routines achieve excellent speedups from this new cache hint.
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Bus Interface
The PA 7200’s Runway bus interface is carefully tuned to the requirements and capabilities of the processor core. The
interface has several features that minimize transaction latency, reduce processor cost, and take advantage of particular
attributes of the CPU core to simplify interface design. The bus interface contains a cache coherence queue and transaction
buffers, arbitration logic, and logic to support multiple processor-to-bus-frequency ratios. The bus interface also implements
an efficient double snoop† algorithm for coherent transaction management.

The PA 7200 connects directly to the Runway bus without transceivers or interface chips. Without this layer of external
logic, system cost is reduced while performance is increased because of lower CPU-to-bus latency. Special system and
circuit designs allow the Runway bus to run at a frequency of 120 MHz while maintaining connectivity to six loads.
Negative-hold-time receiver design and tight skew control prevent races when drivers and receivers operate from the same
clock edge. A read transaction is issued in one bus cycle and the 32-byte memory return is transferred in four cycles,
resulting in a peak sustainable bandwidth of 768 megabytes per second. To take advantage of the high bus bandwidth, the
PA 7200 can have up to six memory reads in flight at the same time.

To minimize read transaction latency, the PA 7200 asserts and captures arbitration signals on the half cycle (phase), as
shown in Fig. 7. The processor core communicates its intent to initiate a transaction in the first phase, allowing the interface
to assert its bus arbitration signal on the second phase. 
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Fig. 7. With numerous bypass paths, latency between the CPU core and the Runway bus is minimized. As soon as the CPU

detects a cache miss, the bus interface arbitrates for the system bus in half a cycle. As soon as the cache miss address is

available, it is routed to the interface in half a cycle, where its bus parity is generated in another half-cycle. Performance

is maximized in the common case of little bus traffic, when the CPU wins bus arbitration immediately.

The transaction address information, only available on the third phase, is then forwarded from the processor core to the bus
interface. In the common case where there is no contention for the Runway bus, the address is driven onto the bus in the
next cycle. Read and write buffers, included in the bus interface to decouple the CPU core in case arbitration is not
immediately won, are bypassed in the common case to reduce latency.

Transactions from the read and write buffers are issued by the bus interface with fixed priorities. Snoop data has the highest
priority, followed by read requests, then the write of cache victims. When the memory controller cannot handle new read
requests and the read and write buffers are full, the bus interface will issue the write transaction before the read to make
best use of the bus bandwidth available.

Since transactions on the Runway bus are always accepted (and never rejected or retried at the expense of bus bandwidth),
each processor acting as a third party must be able to accept a burst of coherent transactions. Since there are times when
the CPU core is busy and cannot accept a snoop, the bus interface implements a ten-transaction-deep queue for cache
snoops and a three-transaction-deep queue for TLB snoops.  With deep coherency queues, a large number of coherent
transactions from several processors can be outstanding without the need to invoke flow control.

Processor-to-bus frequency ratios of 1:1, 3:2, and 4:3 are provided for higher-frequency processor upgrades. Using a ratio
algorithm that requires the bus clock to be synchronous with the processor clock ensures that the ratio logic does not

† A snoop, also known as a cache coherency check, is the action performed by all processors and I/O adapters when they observe a coherent transaction
issued by another module. Each module performing the snoop must check its cache for the address of the current transaction, and if found, change the
state of that cache address. Cache state transitions are described in Article 2.

http://www.hp.com/hpj/feb96/fb96a2.html
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 impart synchronization delays typical of systems with asynchronous clock domains. For any ratio, the worst-case delay is
less than one CPU clock cycle, and in the best case, data transmission does not incur any delay.

To minimize processor pipeline stalls resulting from multiprocessor interference, transactions at the head of the coherency
queue are forwarded to the CPU core in two steps. First, the core is sent a lightweight query, which steals one cycle of cache
bandwidth. A low-latency response is received from the off-chip and assist caches. Only when a cache state modification is
required is a second full-service query forwarded to the CPU core. Since the vast majority of cache snoops result in misses,
this double snoop approach allows the PA 7200 to achieve higher multi– processor performance without the added cost and
complexity of a dual-ported cache or duplicate cache tags.14

PA 7200 Circuit Translation
Most of the PA 7200 circuit designs, artwork, and physical design methodology are based upon and leveraged from the PA
7100 CPU, which was designed using HP’s CMOS26 IC process, tools, and libraries. However, aggressive performance and
cost goals required that the PA 7200 be fabricated using the faster, denser CMOS14 IC process also under development. To
completely redesign and lay out existing PA 7100 circuits for the CMOS14 process would have been an inefficient use of
resources and would have greatly extended the design phase. Therefore, the entire PA 7200 was designed using the existing
CMOS26 technology, and the artwork was then automatically translated to and reverified in the CMOS14 process.

Unfortunately, automatic translation faced two global issues. First, CMOS26 is a 5.0V (nominal) process but CMOS14 was
originally specified for 4.0V operation. Simulations showed that the speed of a few common circuit topologies did not scale
linearly into the target technology because of the lower supply voltage. Detailed investigation by the CMOS14 development
group concluded that raising the supply voltage by 10% was feasible and the process was fully qualified for operation at 4.4V.
This was sufficient for these circuits to meet the speed improvement goal.

Secondly, CMOS26 layout rules do not scale uniformly into the respective rules for CMOS14, since each component of a
process technology has different physical and manufacturing constraints. A simple gate-shrink algorithm, which only reduces
FET effective gate length, could have provided a 20% transistor speed improvement. Without overall area reduction, the
extra PA 7200 functionality dictates a die size much larger than the PA 7100 and this approach would result in slower wire
speeds and a sharp increase in manufacturing cost. With aggressive scaling, a more complex translation algorithm, and a
limited number of engineering adjustments to the layout and electrical rules, the CMOS14 version achieves a 20% overall
speed improvement along with a 38% power reduction from the original CMOS26 design.

Translation Methodology. The methodology that was developed accommodates CMOS26 designs and translated CMOS14
artwork in parallel, is generally transparent, and merges smoothly with the existing design environment. A hierarchical
(block-level) translation methodology was chosen because it provides many advantages over the more traditional flat
(mask-level) translation. Important reasons for selecting this approach were:
� Algorithm flexibility. The optimal translation algorithm is not required to guarantee that every pathological

CMOS26 layout, and more important, all existing PA 7100 blocks are translated to a legal CMOS14 layout as long
as a manageable number of violations result and are easily correctable by hand. Hierarchical methods imply edit-
ing only unique instances of a violation at the block level, rather than the entire set on a flattened mask.

� Design modularity. Having parallel hierarchies containing both CMOS26 and CMOS14 blocks enables additional
flexibility. Translated artwork can be read directly by the front-end editors for electrical simulation and other pur-
poses. On the top-level routing blocks, CMOS14 layouts using a tighter metal pitch were a necessary alternative
to the translated CMOS26 versions.

� Concurrent methodology. Translated artwork is available for mask generation along with the original block. Flat
translation is serialized and for complex algorithms implies a costly delay after each design release. Moreover,
having a complete, hierarchical CMOS14 artwork database allowed subsequent chip revisions to be released using
incremental changes made directly to the CMOS14 artwork.

Many operations in the translation algorithm are complicated by hierarchical junctions (these would disappear with a flat
translation.) A hierarchical junction is any connection between objects in separate blocks. If individual artwork features
touching or extending beyond hierarchical boundaries are further shrunk by a fixed distance after being reduced by the
scaling coefficient, gaps will occur at the parent junctions that cannot always be filled automatically. A subtle but more
troublesome scaling problem is caused by snapping the location of child instances to the grid resolution, which creates
shape misalignments or gaps at parent-child or child-child junctions if origins round in a different direction. This effect can
be cumulative, and becomes significant for junctions that span multiple hierarchical levels. Increased database size and
consistency checking are other drawbacks of a block-oriented translation.

A final check was added after CMOS14 layout verification to hierarchically compare ports, signals, and connectivity
between the CMOS26 and CMOS14 artwork netlists. This was necessary since hand corrections made to the translated
CMOS14 layout could introduce new design errors.

Translation Algorithm. Any scaling coefficient should ensure that all minimum widths, spaces, and exact-size shapes from
CMOS26 be translated to CMOS14 such that each edge pair snaps to the grid resolution (0.05-µm) in the same direction.
There are several natural solutions to ensure that 1.0-µm (drawn) minimum features in CMOS26 always become 0.6-µm
minimum features in CMOS14. For example:
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� Scale by α = 0.8 and then further shrink interconnect by 0.2 µm.

� First shrink interconnect by 0.2 µm and then scale by 
α = 0.75.

The second option is only practical for library blocks since it is too aggressive for interconnect with minimum contacted
pitch and provides less margin for the effects of uneven grid snapping. The detailed algorithm is based upon the first option,
with additional manipulations of n-well regions, FET gate extensions, contact sizes, interconnect contact enclosure, and
interlayer contact spacing. These operations have parasitic effects which can create notches and narrow corners and are
usually correctable by automatically filling new width and spacing violations.

There were still a residual number of geometrical cases that could not be fully translated by any reasonable tool or
heuristic. In these cases we either waived the layout rules where margin was available or made extra efforts to repair rule
violations by hand. Although many of these violations did occur, the vast majority resulted either from the hierarchical
phenomena described earlier or from fundamental scaling issues with certain contact structures and latch-up prevention
rules. In no case was any significant block relayout required, however.

Scaling-Sensitive Circuits. Although algorithmic translation of PA 7200 circuits generally improves electrical performance and
decreases parasitic effects, there are a few exceptional circuits with different characteristics. In general, these were
abnormally sensitive to transistor sizing ratios, noise caused by coupling, voltage shifts caused by charge sharing, small
variations in processing parameters, or the reduced 4.4V high level. Additionally, total resistance in the third layer of metal
can increase after translation and cause routing delays to improve less than the basic scaling assumptions predict.

Summary
The design goal for the PA 7200 was to increase the performance of Hewlett-Packard computer systems on real-world
applications in a variety of markets while maintaining a high degree of price/performance scalability and a low system
component count. General application performance is improved through an increase in operating frequency, a second
integer ALU for enhanced superscalar execution, and improved store instruction performance. For applications that operate
on large data sets, such as typical analytic and scientific applications, the hardware prefetching algorithms and fully
associative assist cache implemented in the PA 7200 provide excellent performance increases. In addition, the processor
includes a high-bandwidth, low-latency multiprocessor bus interface to support cost-effective, high-performance, one-way
to four-way multiprocessor systems, which are ideal for technical or commercial platforms, without additional interface
chips. Additionally, the PA 7200 is scalable from desktop workstations to many-way multiprocessor corporate computing
platforms and supercomputers.

Acknowledgments
The authors would like to thank all the different teams who contributed to the successful design of the PA 7200 chip. The
design and implementation was primarily done by many individuals from the Computer Technology Laboratory and the
Cupertino Systems Laboratory in Cupertino, California and several individuals from the Engineering Systems Laboratory in
Fort Collins, Colorado. Many thanks also to several teams whose work was responsible for many key design decisions
made. This includes the Integrated Circuits Business Division in Fort Collins and the Systems Performance Laboratory and
the California Languages Laboratory in Cupertino. 

References
1. M.J. Mahon, et al, “Hewlett-Packard Precision Architecture: The Processor,” Hewlett-Packard Journal, Vol. 37, no. 8, August

1986, pp. 4-21.
2. R.B. Lee, “Precision Architecture,” IEEE Computer, Vol. 22, no. 1, January 1989, pp.79-91.
3. P. Knebel, et al, “HP’s PA 7100LC: A Low-Cost Superscalar PA-RISC Processor,” Compcon Digest of Papers, February 1993, pp.

441-447.
4. E. Delano, et al, “A High-Speed Superscalar PA-RISC Processor,” Compcon Digest of Papers, February 1992, pp. 116-121.
5. M. Forsyth, et al, “CMOS PA-RISC Processor for a New Family of Workstations,” Compcon Digest of Papers, February 1991, pp.

202-207.
6. D. Tanksalvala, et al, “A 90-MHZ CMOS RISC CPU Designed for Sustained Performance,” ISSCC Digest of Technical Papers,

February 1990, pp. 52-53.
7. B.D. Boschma, et al, A 30-MIPS VLSI CPU,“ ISSCC Digest of Technical Papers, February 1989, pp. 82-83.
8. J. Yetter, et al, “A 15-MIPS 32b Microprocessor,” ISSCC Digest of Technical Papers, February 1987, pp. 26-27.
9. D. Fotland, et al, “Hardware Design of the First HP Precision Architecture Computers,” Hewlett-Packard Journal, Vol. 38, no. 3,

March 1987, pp. 4-17.
10. G. Kurpanek, et al, “PA 7200: A PA-RISC Processor with Integrated High-Performance MP Bus Interface,” Compcon Digest of

Papers, February 1994, pp. 375-382.
11. E. Rashid, et al, “A CMOS RISC CPU with on-chip Parallel Cache,” ISSCC Digest of Technical Papers, February 1994.



February 1996 Hewlett-Packard Journal       11

12. T Asprey, et al, “Performance Features of the PA 7100 Microprocessor,” IEEE Micro, June 1993, pp. 22-35.
13. J. Hennessy and D. Patterson, Computer Architecture, A Quantitative Approach, Morgan Kaufmann Publishers, 1990.
14. K. Chan, et al, “Multiprocessor Features of the HP Corporate Business Servers,” Compcon Digest of Papers, February 1993, pp.

330-337.

http://www.hp.com/hpj/journal.html
http://www.hp.com/hpj/feb96/toc-02-96.html
http://www.hp.com/hpj/feb96/fb96a4.html


February 1996 Hewlett-Packard Journal       1

Verification, Characterization, and

Debugging of the HP PA 7200 Processor

To guarantee a high-quality product the HP PA 7200 CPU chip was
subjected to functional and electrical verification. This article
describes the testing methods, the debugging tools and
approaches, and the impact of the interactions between the chip
design and the IC fabrication process.

by Thomas B. Alexander, Kent A. Dickey, David N. Goldberg, Ross V. La Fetra, James R. McGee,

Nazeem Noordeen, and Akshya Prakash

The complexity of digital VLSI chips has grown dramatically in recent years. Rapid advances in integrated circuit process
technology have led to ever-increasing densities, which have enabled designers to design more and more functionality into a
single chip. Electrically, the operating frequency of these VLSI chips has also gone up significantly. This has been a result of
the increased speed of the transistors (CMOS transistors are commonly called FETs, for field effect transistors) and the fact
that the circuits are closer to each other than before. All this has had tremendous benefits in terms of performance, size, and
reliability.

The increased complexity of the VLSI chips has created new and more complicated problems. Many sophisticated
techniques and tools are being developed to deal with this new set of problems. Nowhere is this better illustrated than with
CPUs, especially in design verification, both functional and electrical. While design has always been the focus of attention,
verification has now become a very challenging and critical task. In fact, verification activities now consume more time and
resources than design and are the real limiters of time to market.

On the functional side, for many years now it has been impossible to come even close to a complete check of all possible
states of the chip. The challenge is to do intelligent verification (both presilicon and postsilicon) that gives very high
confidence that the design is correct and that the final customer will not see any problem. On the electrical side, the
challenge has been to find the weak links in the design by creating the right set of environments and tests that are most
likely to expose failures. The increased complexity of the VLSI chips has also made isolation of a failure down to the exact
FET or signal an increasingly difficult task.

This paper presents the verification methodology, techniques, and tools that were used on the HP PA 7200 CPU to guarantee
a high-quality product. Fig. 1 shows the PA 7200 CPU in its pin-grid array package. The paper describes the functional and
electrical verification of the PA 7200 as well as the testing methods, the debugging tools and approaches, and the impact of
the interactions between the chip design and the IC fabrication process.

Functional Verification
The PA 7200 CPU underwent intensive design verification efforts to ensure the quality and correctness of its functionality.
These verification efforts were an integral part of the CPU design process. Verification was performed at all stages in the
design, and each stage imposed its own constraints on the testing possible. There were two main stages of functional
verification: the presilicon implementation stage and the postsilicon prototyping stage.

Presilicon Functional Verification
Since the design of the PA 7200 was based upon the PA 7100 CPU, we chose to use the same modeling language and
proprietary simulator to model and verify its design. During the implementation stage a detailed simulation model was built
to verify the correctness of the design. Early in the implementation stage, software behavioral models were used to
represent portions of the design and these were incrementally replaced by detailed models. A switch-level model was also
used late in the implementation stage to ensure equivalence between the actual design implementation and the simulation
model. This switch-level model was extracted from the physical design’s FET artwork netlists and was used in the final
regression testing of the design.

Test cases were written to provide thorough functional coverage of the simulation model. The test case strategy for the PA
7200 was to:
� Run all existing cases derived for previous generations of PA-RISC processors

� Run all architectural verification programs (AVPs)
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� Write and run test suites and cases directed at specific functional areas of the implementation, including the newly
designed multiprocessor bus interface (Runway bus) and its control unit, the assist cache, the dual-issue control
unit, and other unique functionality

� Generate and run focused random test cases that thoroughly stress and vary processor state, cache state, multipro-
cessor activities, and timing conditions in the various functional units of the processor.

Fig. 1. The PA 7200 CPU in its pin-grid array package, with the lid removed to reveal the chip.

Existing legacy test cases and AVPs targeted for other generations of PA-RISC processors often had to be converted or
redirected in a sensible way to yield interesting cases on the PA 7200. Additional test cases were generated to create
complex interactions between the CPU functional units, external bus events, and the system state. An internally developed
automated test case generation program allowed verification engineers to generate thousands of interesting cases that
focused upon and stressed particular CPU units or functions over a variety of normal, unusual, and boundary conditions. In
addition, many specific cases were generated by hand to achieve exact timing and logical conditions. Macros were written
and a macro preprocessor was used to facilitate high productivity in generating test case conditions.

All test code was run on the PA 7200 CPU model and on a PA-RISC architectural simulator and the results were compared
on an instruction-by instruction basis. The test case generation and simulation process is shown in Fig. 2. A PA 7200-specific
version of the PA-RISC architectural simulator was developed to provide high coverage in the areas of
multiprocessor-specific conditions, ordering rules, cache move-in, move-out rules, and cache coherence. Some portions of
the internal CPU control model were also compared with the architectural simulator to allow proper tracking and checking
of implementation-specific actions. Since the PA 7200 was designed to support several processor-to-system-bus frequency
ratios, the simulation environment was built to facilitate running tests at various ratios.

The architected state of the CPU and simulator, including architected registers, caches, and TLBs, was initialized at model
startup time. Traces of instruction execution and relevant architected state from the CPU model and from the PA-RISC
simulator were compared. These traces included disassembled code, affected register values, and relevant load/store or
address information, providing an effective guide for debugging problems.

A test bench approach was used to model other system bus components and to verify proper system and multiprocessor
behavior, including adherence to the bus protocol. The test bench accepted test case stimulus to stimulate and check proper
CPU operation. Multiprocessor effects on the caches and the pipeline of the CPU being tested were checked in detail both
by instruction execution comparison and by final state comparison of architected registers, caches, and TLBs.

The bulk of the testing during the implementation stage entailed running assembly language test vectors on the simulation
model. The principal limitation of this stage was the limited execution speed of the simulation model.

As components of the simulation model became defined and individually tested, they were combined into increasingly
larger components until a combined simulation model was built for the entire computer system including processors,
memory, and I/O.
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Fig. 2. PA 7200 test case generation and simulation process.

An effort was also made to evaluate the test case coverage of processor control logic to ensure that we had high coverage of
the functional units with normal and corner-case conditions. During our regressions of functional simulation, the simulation
model was instrumented to provide coverage data, which was postprocessed to yield coverage metrics on the control logic.

This verification effort consumed many engineering months in test bench development, test case generation, and test
checking. Billions of simulation cycles were run on scores of high-performance technical workstations during nights and
weekends in several different geographical locations. The result of this effort is a high-quality CPU that booted its operating
system and enabled postsilicon functional and electrical verification efforts soon after the first silicon parts were received.

This simulation approach also facilitated a productive debugging and regression testing environment for testing fixes.
Specifically, when making a correction to the CPU, the simulation environment allowed the verification team to run
regression suites that stressed the faulty area, providing more complete simulation coverage of the problem.

Postsilicon Functional Verification
Despite the massive presilicon testing, there are always bugs that are found once the first hardware becomes available.
Bugs that affect all chips regardless of temperature, voltage, or frequency are termed functional bugs. Bugs that are made
worse by environmental conditions or do not occur in all chips are termed electrical problems, and the test strategy for
finding those problems is detailed in the section on electrical verification.

Testing machines as complex as the HP 9000 J-class and K-class systems, the first systems to use the PA 7200, was a large
effort involving dozens of people testing specific areas. This section will describe how the processor design laboratory
created processor-focused tests to find processor bugs. Many other people contributed to testing other portions of the
systems with intentional overlap of testing coverage to ensure high quality.

Because of the complexity of modern processor chips, not all bugs are found in presilicon testing. The processor is so
complicated that adequate testing would take years running at operational speed to hit all the interesting test cases.
Presilicon testing is orders of magnitude too slow to hit that many cases in a reasonable amount of time. Thus, when
presilicon testing stops finding bugs, the chip is manufactured and postsilicon testing commences. However, finding bugs is
not as simple as just turning the power on and waiting for the bugs to appear. One problem is deciding what tests to run to
look for failures. Poorly written tests will not find bugs that customers might find. Another problem is debugging failures to
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their root causes in a timely manner. Knowing a problem exists is a great start, but sometimes discovering exactly what has
gone wrong in such complex systems can be very difficult. Postsilicon testing loses much of the observability of processor
state that was easily obtained in the simulation environment.

To provide high coverage of design features, three testing tools were prepared to stress the hardware. These tools were
software programs used to create tests to run on the prototype machines. Each tool had its own focus and intended overlap
with other tools to improve coverage. All tools had a proven track record from running on previous systems successfully. To
ensure adequate testing, two tools were heavily modified to stress new features in the PA 7200.

All of the tools had some features in common. They all ran standalone independently on prototype machines under a small
operating system. Because they did not run under the HP-UX* operating system, much better machine control could be
achieved. In addition, not needing the HP-UX operating system decoupled hardware debugging from the software schedule
and let the hardware laboratory find bugs in a timely manner. (Later in the verification process, HP-UX-based system testing
is performed to ensure thorough coverage. However, the team did not rely on this to find hardware problems.) All hardware
test tools also had the ability to generate their own code sequences and were all self-checking. Often these code sequences
were randomly generated, but some tools supported hand-coded tests to stress a particular hardware feature.

Uniprocessor Testing
Even though PA 7200 systems support up to four processors, it is desirable to debug any uniprocessor problems before
testing for the much more complex multiprocessor bugs. The first tool was leveraged from the PA 7100LC effort to provide
known good coverage of uniprocessor functionality.

This tool operated by generating sequences of pseudorandom instructions on a known good machine, like an HP 9000 Model
735 workstation. On this reference machine, a simulator would calculate the correct expected values and then create a test
to be run on the prototype hardware. This test would set up hundreds of various initial states and run the prepared
sequence. Each time it ran the sequence, the tool would determine if it got the correct result and display any differences.
Since much of the work was done on another machine to prepare the correct answer, this tool was very robust and was a
good initial bring-up vehicle. It also could run its sequences very quickly and give good coverage in a short amount of time.
However, uniprocessor bugs ramped down very quickly, and so this tool was used much less after initial bring-up.

Multiprocessor Testing
The verification team was especially concerned with multiprocessor bugs, since experience indicated that they are much
more difficult to find and debug than uniprocessor cases. These complex bugs were often found later in the project. For this
reason, the two other tools used were heavily modified to enhance PA 7200 testing for multiprocessor corner cases.

The first multiprocessor-focused tool attempted to do exhaustive testing of the effects of various bus transactions
interacting with a test sequence. The interference transactions were fixed but were chosen to hit all the cases that were
considered interesting. The test sequence could be randomly generated or written manually to stress a particular area of the
processor.

To determine if a test operated properly, the tool would run the test sequence once without any interference from other
processors. It would capture the machine state after this run (register, cache, memory) and save it as the reference results.
The tool did not need to know what the test was doing at all—it simply logged whatever result it got at the end. To test
multiprocessor interference transactions, the tool would then arrange to have other processors try all combinations of
interesting transactions selected to interact with the sequence. This was accomplished by running the test in a loop with the
interference transactions being moved through every possible cycle in a predetermined timing window. This exhaustive
testing of interference transactions against a code sequence provided known good coverage of certain troublesome areas.
When there were failures, many useful debugging clues were available regarding which cases passed and which cases failed
to help in tracking down the bug.

The main deficiency of this tool was that it relied on high uniprocessor functionality. If there were bugs that could affect the
reference run, the tool would not be able to detect them. Thus, this tool could not run until uniprocessor functionality was
considered stable. As it turned out, the initial PA 7200 silicon had very high uniprocessor functionality and so testing began
on initial silicon. One advantage of this tool over the uniprocessor tool was that it could run for an unlimited amount of time
on the prototype hardware and generate test cases on its own. This ability made running this tool much simpler than the
uniprocessor tool.

The final tool was the backbone of the functional verification effort. In many ways, this tool merged the good ideas from
other tools into one program to provide high coverage with ease of use. This tool generated sequences of pseudorandom
instructions on each processor, ran the sequences across all the processors simultaneously, and then checked itself. It
calculated the correct results as it created the instruction sequences, so it could run unattended for an unlimited time. The
sequences and interactions it could generate were much more stressful than the other tools. Much of this ability came from
the effort put into expanding this tool, but some of it came from basic design decisions.

This tool relied completely on pseudorandomly generated code sequences to find its bugs. The tool took probabilities from
an input file which directed the tool to stress certain areas. These focused tests enhanced coverage of certain processor
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functionality such as the new data prefetching ability of the PA 7200. Almost any parameter that could be changed was
changed constantly by this tool to hit cases beyond what the verification team could think of. Having almost no fixed
parameters allowed this tool to hit bugs that no other tool or test has ever hit.

This final tool received additional modifications to test DMA (direct memory access) between peripheral cards and memory.
The new Runway bus added new bus protocols involving I/O transactions, which the processor needed to obey to ensure
system correctness. DMA was used to activate these bus protocols to verify that the PA 7200 operated properly. To make
sure these extra cases were well-covered, DMA was performed using various peripheral devices while the processor testing
was done. This extra testing was worth the investment since several bugs were found that might not have been caught
otherwise.

The postsilicon verification effort was considered successful because the team found almost every bug before other groups
and could communicate workarounds for hardware problems to keep them from affecting software schedules. The
operating system testing actually found very few processor bugs, and all serious bugs were found by the postsilicon
hardware verification team. Some of the later hardware bugs found may never be encountered by the current operating
system because the compilers and the operating system are limited in the code sequences they emit. However, the hardware
has been verified to the point that if a future compiler or operating system uses a feature not used before, it can in all
likelihood do so without encountering a bug.

Electrical Verification

Electrical verification of a VLSI device is performed to guarantee that when the product is shipped to a customer, the device
will function properly over the entire operating region specified for the product. The operating region variables include
ambient temperature, power supply voltages, and the clock frequency of the VLSI device. In addition, electrical verification
must account for integrated circuit fabrication process variation over the life of the device. Testing for sensitivities to these
variables and improving the design to account for them improves fabrication yield and increases the margin of the product.
This section describes the various electrical verification activities performed for the PA 7200 CPU chip.

Electrical Characterization
Electrical characterization refers to the task of creating different test environments and test code with the goal of
identifying electrical failures on the chip. Once an electrical failure is detected, characterization also includes determining
the characteristics of the failure like dependencies on voltage, temperature, and frequency.

Electrical failures may manifest themselves on one, several, or every chip at some operating point (temperature, voltage, or
frequency) of the CPU. Electrical failures cause the chip to malfunction and typically have a root cause in some electrical
phenomenon such as the familiar hold time or setup time violation. As chip operating frequencies increase, other electrical
phenomena such as coupling between signals, charge sharing, and unforeseen interchip circuit interactions increasingly
become issues.

To ensure a high level of quality, various types of testing and test environments are used to check that all electrical failures
are detected and corrected before shipment to customers. Dwell testing and shmoo testing are two types of testing
techniques used to characterize chips.

For the PA 7200, dwell testing involved running pseudorandom code on the system for extended periods of time at a given
voltage-temperature-frequency point. Since the test code patterns are extremely important for electrical verification, dwell
testing was used to guarantee that the pseudorandom code would generate sufficient patterns to test the CPU adequately.

Shmoo testing involves creating voltage-frequency plots (shmoo plots) by running test code at many
voltage-frequency-temperature combinations. Fig. 3 shows a typical style of shmoo plot. This plot is for a failing chip that
has some speed problems. By examining the shape of the shmoo plot, much can be learned about the design of the chip.
Voltage–frequency– temperature points well beyond the legal operating range should be included in the shmoo plot. It is not
sufficient to rely only on the minimum allowed margin (in terms of voltage-frequency-temperature) to determine if the
design is robust. The test code run for creating shmoo plots is extremely important. Simple code can create a false sense of
quality.

Testing Environments
There were four main testing environments for the PA 7200: system characterization, chip tester characterization,
production characterization, and functional characterization.

System Characterization. This testing is focused on running the CPU in the actual system and altering the operating variables
to determine the characteristics of the design. The variables that are involved here are test code, ambient temperature,
voltages (internal chip voltage, I/O pad voltage, and cache SRAM voltage), frequency of the chip, types of CPU chips
(variations in manufacturing process), types of cache SRAMs (slow versus fast), and system bus speed. Various types of test
code are run on the system, including pseudorandom PA-RISC code, HP-UX application code, and directed PA-RISC
assembly code.
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Fig. 3. Voltage-frequency shmoo plot.

Chip Tester Characterization. This testing consists of running a set of chips processed with different manufacturing process
variables on a VLSI chip tester over ranges of temperature, voltage, and frequency, using a set of specific tests written for
the PA 7200. The chip tester can run any piece of code at operating frequency by providing stimulus and performing checks
at the I/O pins of the chip. Testing is accomplished through a mixture of parallel and scan methods using a VLSI test system.
The majority of testing is done with at-speed parallel pin tests. Tests written in PA-RISC assembly code for the PA 7200 that
cover logical functionality and speed paths are converted through a simulation extraction process into tester vectors.
Scan-based tests are used for circuits such as standard-cell control blocks and PLA structures, which are inherently difficult
to test fully using parallel pin tests. These parallel tests are run on the tester well beyond the operating speed of the chip.

Production Characterization. All PA 7200 chips go through a set of tests on the chip tester. Since a large number of chips are
manufactured for prototyping purposes, the results of the normal manufacturing tests are very valuable for characterization.
This testing provides characterization data for all the chips that are manufactured with a set of specific tests written for the
PA 7200 over ranges of temperature, voltage, and frequency. Parallel and scan tests written for the PA 7200 are run within
the operating range possible on customer systems as well as in well-defined regions of margin outside this operating range.
This type of testing over all the chips shows electrical failures that could happen if there are variations in the manufacturing
process over time.

Functional Characterization. This testing involves running pseudorandomly generated tests on the system at the nominal
operating point for very long periods of time (months). Even though this testing uses code environments targeted for
functional verification, it can be very effective in detecting electrical issues. This type of testing can often find any test cases
(circuit paths) that have not been covered in the prior three types of testing and will reduce the chance that the customer
will ever have any electrical problems.

Debugging

When a problem is seen within the operating region of the chip, the problem must be debugged and fixed. Tests are run well
beyond the operating region to look for anomalies. Failures outside the operating region are also understood to make sure
that the failure will not move into the operating region (with a different environment, test, or manufacturing process shift).
The root causes of these electrical problems need to be characterized and understood. In the characterization of the
problem many chips are tried in various environments to understand the severity of the problem. To understand the cause of
the failure, the test code is analyzed and converted to a small directed test with only the pertinent failing sequence. This is
necessary to limit the scope of the investigation. Then the problem is further analyzed on the chip tester. The chip tester can
run any piece of code at speed but it can run only reasonable sizes of code because of the amount of tester memory. The
tester can perform types of experiments that the system cannot provide, such as varying the clock cycle for a certain period
of time. This process is called phase stretching (see Fig. 4). Often the failing path can be determined at this point based on
phase stretching experiments. Various other techniques can also be used on the tester to isolate the failing path. Once the
failing path is isolated, the electrical failing mechanism needs to be understood. Various tools are used to determine the
failing mechanism.
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One method to help identify the failing mechanism is to use an electron-beam (E-beam) scoping tool on the chip tester. In
this process, the failing test is run in a loop on the tester and internal signals are probed to look at waveforms and the
relationships between signals. It is very similar to using an oscilloscope to look at a signal on a printed circuit board except
that it is done at the chip level.

As final confirmation of the failing mechanism, the failing circuit is modeled by the designer. The electrical components of
the circuit path are extracted and simulated with a circuit simulator (SPICE). The modeling needs to be accurate to
reproduce the failure on the simulator. Once the failing mechanism is confirmed in SPICE, a fix is developed and verified.

Since a chip turn to determine whether the fix will work and that the fix has no side effects takes a long time, the fix can
often be verified with a focused-ion-beam (FIB) process. FIBing is a process by which the chip’s internal connections can
be modified, thereby changing its behavior or functionality. In the FIB process, metal wires can be cut, or joined by metal
deposition. FIB is an extremely valuable tool to verify fixes before implementing them in the actual design.

After the electrical failing mechanism is understood, additional work is done to create the worst-case test for this failure.
The insight gained from understanding the root cause allows the test to be tailored to excite the failing mechanism more
readily. This can cause the test to fail more often, at a lower or higher frequency, a lower or higher voltage, or a lower or
higher temperature. Developing a worst-case test is an extremely important step. The extent of the original problem cannot
be understood until the worst-case test is developed. Including the worst-case test in the production screen ensures that
parts shipped to customers will never exhibit the failure even under varying operating conditions and the most stressful
hardware and software environments.

These points can be illustrated with a case study. The nominal operating point of the PA 7200 is 120 MHz at a VDD of
4.4 volts. In this particular example, a failure occurred while running a pseudorandom test at 5.1 volts and 120 MHz at high
temperature (55°C ambient). Even though the PA 7200 is not required to operate at this voltage the verification team did not
expect this failure. Thus, this problem needed to be characterized and its root cause understood.

In this example, this chip was the only one that failed at 5.1 volts. However, a few other chips failed at even higher voltages.
This problem was worse at higher frequencies and higher temperatures. The test code that was failing was converted from
pseudorandom system code to tester code. Next the test code was run on the tester and analyzed. Since this problem did
not occur at lower frequencies, each phase of the clock in the test was stretched to determine which clock phase made the
chip pass or fail. The internal state of the chip was also dumped out on the tester using serial scan. The failing and passing
internal scanned states were compared to see which states were improperly set. This helped to isolate the failing path. Once
this was done, the failing path for this failure was analyzed to understand the electrical failing mechanism. For this problem,
E-beam was used to understand the failing mechanism.

Fig. 5 shows the circuit that was failing in this debugging example. The circuit is a latch with the signal LRXH controlling the
transfer of data into the latch. When LRXH and CK1N (clock) are true (logic 1), the latch is open and the inverted level of the
input RCV gets transferred to the output HM2. When LRXH is false (logic 0), the latch is closed and the output HM2 holds its
state.

Fig. 6 shows the waveforms of the internal signals that were captured through E-beam. The last two signals, CK1N and CK2N,
are the two-phase clock signals on the chip. The passing and failing waveforms for LRXH and HM2 are shown at the top of
the figure. The passing waveforms for LRXH and HM2 are called LRXH/4.7V@Ird+0ns and HM2/4.7@Ird+0ns, respectively. The
failing waveforms for LRXH and HM2 are called LRXH/4.7V@Ird�1.0ns and HM2/4.7@Ird�1.0ns, respectively. The input signal
RCV (not shown in the figure) is 1 during the first two pulses of LRXH shown, 0 during the third pulse, and 1 thereafter. The
output HM2 is expected to transition from 0 to 1 during the third LRXH pulse and stay 1 until the fourth pulse. However, the
slow falling edge on LRXH causes a problem. In the failing case, on the third LRXH pulse, HM2 transitions from 0 to 1 but the
slow falling edge on LRXH also lets the next input value of RCV (1) propagate to the output HM2. HM2 therefore transitions
back to 0. In the passing case, the falling edge of LRXH arrives a little earlier and the output HM2 maintains what was
captured in the latch (1). Once the failing mechanism was understood, the worst-case test was developed. 
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Fig. 5. A latch circuit that was failing at 5.1 volts.

In this case study, the worst-case test caused many parts to fail at nominal conditions. The failing mechanism was modeled
in a circuit model by the designer. Once this was done, a fix was developed. FIB was used to verify the fix. This failure
mechanism was fixed by speeding up LRXH by adding a buffer to the long route of LRXH. Fig. 7 shows how this was done.
The figure is a photograph of a die that was FIBed to buffer the LRXH signal. To do this, the long vertical metal 3 wire on the
right side of the figure was cut with the FIB process and a buffer was inserted. A buffer was available on the left side of the
figure; however, metal 3 covered this buffer. The FIB process was used to etch the metal 3 area surrounding the buffer to
expose the metal 2 connections of the buffer. The FIB process was then used to deposit metal to connect the metal 2 of the
buffer to the vertical metal 3 wires. The FIBed chip was then tested to make sure that the failing mechanism was fixed.

Testability

We leveraged the test circuits and strategy for the PA 7200 from the PA 7100 chip. The scan controller was required to
change from our proprietary diagnostic instruction port to the industry-standard JTAG. This was a minimal change, since
both protocols do the same function. The new test controller was leveraged from the PA 7100LC chip to keep the design
effort to a minimum. Before tape release we verified that the basic test circuits would work.

Since the test circuits were leveraged from the PA 7100, the obvious choice was to leverage the test strategy from the
PA 7100 chip as well. A fast parallel pin tester was chosen early on as the tester for the PA 7200. This tester would provide
both parallel pin testing and scan testing. We decided that data path circuits would be tested by parallel pin testing, and scan
testing would be limited to a few control blocks. All speed testing was to be done with parallel pin testing.

Benchtop Tester
Since the parallel pin tester was located elsewhere, we knew we could not use it for local debugging of the chip. Many
problems needed only simple debugging capability and could be greatly accelerated by the presence of a local debugging
station. For that purpose, we chose an inexpensive benchtop tester developed internally. This tester applied all vectors
serially to the chip. Vectors developed for serial use could be used as is. The parallel pin vectors could be translated into
what we called pin vectors, which is a boundary scan, looking-into-the-chip approach. No speed testing capability was
planned, although some support for speed testing was present in the PA 7200.

The PA 7200 chip has on-chip clock control. This was essential to our success because the benchtop tester was not
practically able to provide a separate clock control signal. The tester can (and did) issue clock control commands in the
serial data. Having these commands interpreted on-chip saved us from having to build that circuitry off-chip. This made the
chip test fixture very simple.
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Fig. 6. Waveforms of the internal signals of the failing latch circuit, captured by electron-beam probing.

The benchtop tester was the only means of standalone chip testing we had collocated with the design team, and therefore
was very important to the debugging efforts. The tester used a workstation as a controller and interface, and was capable of
storing very long vectors (limited only by the workstation’s virtual memory). We had the ability to load the entire parallel pin
vector suite (590 million shifts) into the benchtop tester at one time, although this took so long as to be practically
prohibitive. The benchtop tester had both scan and some limited parallel pin capabilities for driving reset pins.

Benchtop Tester Environment
The benchtop tester was based on an HP-UX workstation and could be operated from a script. This allowed us to put our
own script wrappers around the software, which provided essential control for power supplies and the pulse generator.
These script wrappers also provided transparent workarounds to some of the limitations of the tester.

We had two testers that we controlled access to via HP TaskBroker. By using HP TaskBroker, we could easily share the test
fixtures between the various uses, such as test development, chip debugging, and automatic test verification. For chip
debugging, an engineer could obtain an interactive lock on the tester (a window would pop up when an engineer got the
tester), and did not have to worry about interference from an unattended job trying to run. Also, a test could be initiated
from an engineer’s desk, and when a tester was free, the test would run and return the results to the engineer. HP
TaskBroker handled all the queuing and priority issues.

As our experience increased and our needs became clear, we wrote more simple scripts around those we already had. This
allowed us to write complex functions as composites of simple blocks.

Double Step
As chip bring-up progressed, we found that we could benefit from some simple local speed test capabilities. As a result, we
chose to implement basic speed testing on the benchtop tester stations we had in place.

We employed programmable pulse generators and had the software to control the frequency. All that was needed was to
convert the tests to double-step pin vectors and make sure they worked. A double-step pin vector is the same as a
single-step pin vector, except that two chip cycles are run at speed. This requires that the I/O cells be able to store two
values, not just one as would be required for single stepping. This feature was already in the I/O cell design.
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Fig. 7. Once the latch problem was found and a fix developed, the fix was verified by modifying one die using a fo-

cused-ion-beam (FIB) process. The long vertical metal 3 wire on the right was cut with the FIB process and a buffer

was inserted. A buffer was available on the left side of the figure; however, metal 3 covered this buffer. The FIB process

was used to etch the metal 3 area surrounding the buffer to expose the metal 2 connections of the buffer. The FIB pro-

cess was then used to deposit metal to connect the metal 2 of the buffer to the vertical metal 3 wires. The FIBed chip

was then tested to make sure that the failing mechanism was fixed. Photo courtesy of FAST (FIB Applied Semiconduc-

tor Technology), San Jose, California.

By converting the tests to double-step pin vectors and making some minor changes to the design, we got double-step pin
vectors working. This capability to do at-speed local testing was very valuable in debugging the chip.

Additional Tools
A simple tool was put together to produce shmoo plots of about 50 points for a single test. We spent considerable effort
optimizing this script. The engineers doing debugging found this very valuable.

When doing speed path debugging, the engineer wants to know which cycles are slow. One way to find out is to take a
failing test and make some cycles slower, and if the chip passes, that means that the chip was failing on one of those cycles.
Just observing the pins is not enough, however, since a failure may stay inside the chip for a while before propagating to the
pins. We implemented this kind of test by changing our pin vector strategy from a double step to a combination of half steps
and single steps during selected cycles of the test. Since the clock commands take a long time to shift in, this effectively
slows down some cycles of the test. We call this style of testing phase stretching (see Fig. 4).

Another very valuable tool was an automated phase stretching tool. It would take a chip and find the slow cycles with a
given set of tests. This would take a few hours, but need not be supervised, so overnight tests worked well. While this would
not tell what the problem was directly, it provided valuable clues.

We also had the ability to run part of a test, then stop it and dump the state of the internal scan chains. A chip expert could
look at these dumps and see what went wrong. Use of this tool was extremely useful during our debugging efforts.

The benchtop testers were considered very valuable to the debugging of the PA 7200. The software written for the testers
contributed greatly to their success. The benchtop testers became known for their reliability, ease of use, and locality.
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Design-Process Interactions

To achieve the highest quality in any VLSI product, it is very important to ensure that there is good harmony in the
relationship between the chip design and the chip fabrication process. This relationship on the PA 7200 went through some
rocky roads and had its own interesting set of problems. In the end, however, the desired harmony was achieved and is
reflected in the high quality and yields of the final product. This section will describe the situation that existed on the PA
7200 and some of the steps taken to anticipate and smooth out problems in this area.

The characteristics of the IC process have a big influence on decisions made at every step of the development cycle of a
VLSI product, starting from the early stages of the design. The influence can be seen in many areas like the goals of the
design, the feature set to be included, and the details of the implementation at the transistor level. For example, the process
dictates the intrinsic speed of the transistor, which is a key factor in setting the frequency goals of the chip. Similarly, the
minimum feature sizes (line width, spacing, etc.) of the process largely dictate the size of the basic storage or memory cell.
This in turn is a factor that determines, for example, the size of the TLB on the die, which is a key component in determining
the performance of a microprocessor. An example of this influence at the implementation level would be an input pad
receiver designed to trip at a particular voltage level on the external (input) signal. The implementation has to ensure that
the trip level is fairly tightly controlled at all corners of the process, which is not easy to do. Another trivial example is the
size of a power or ground trace. The size of the trace required to carry a certain amount of current is largely dictated by the
resistance and electromigration limits of the metal.

There were two target HP IC processes in mind when the design of the PA 7200 began: CMOS26 and CMOS14. CMOS26 was
the process of the previous generation CPUs, the PA 7100 and the PA 7100LC. Its benefits were that it was a very mature and
stable process. Also, some circuits of the PA 7100 are used in the PA 7200 with little or no modification, and the behavior of
these circuits was well-understood in this process. CMOS14 was the next-generation process being developed. Its benefits
were, obviously, smaller feature size and better FET speed. However, only a few simple chips had been fabricated in this
process before the PA 7200, and many startup problems were likely to be encountered. That we had a choice influenced the
design methodology. Taking advantage of the scalability of CMOS designs, the initial design was done in CMOS26. An
artwork shrink process was developed to convert the design to CMOS14. The shrink process is a topic that merits special
attention and is described in Article 3.

As the design went along, it became clear that to meet the performance and size goals of the product, CMOS14 was the
better choice. To demonstrate feasibility and to iron out problems with the shrink process, the existing PA 7100 CPU was
taken through the shrink process and fabricated in CMOS14. Several issues were uncovered, leading to early detection of
potential problems.

Related to the IC fabrication process, the goal of electrical verification and characterization is to ensure that the VLSI chip
operates correctly for parts fabricated within the bounds of the normal process variations expected during manufacturing.
An incomplete job done here or variations of the process outside the normal range can cause subtle problems that often get
detected much later on. There are two yield calculations that are often used to quantify the manufacturability of a VLSI
product. The functional yield denotes the fraction of the total die manufactured that are fully operational (or functional) at
some electrical operating point, that is, some combination of frequency, voltage, and temperature. The survival yield

denotes the fraction of the functional die that are operational over the entire electrical operating range of the product, that
is, the product specifications for frequency, voltage, and temperature. (In reality, to guarantee this, there is some
guardbanding that occurs beyond the operating range of the product)

To achieve the highest quality and manufacturability of the final product, the following are some of the objectives set for
electrical characterization:
� Ensure that the design has solid operating margin (in voltage, frequency, and temperature) for parts fabricated

at all the different corners of the process.

� Ensure consistently high survival yield for a statistically large number of wafers and lots fabricated.

� To ferret out problems that may be otherwise hard to find, fabricate some parts at points beyond the normal varia-
tions of the process. Debug problems in these parts to ensure the robustness of the design.

The PA 7200 chip was the first complex VLSI chip to be fabricated in CMOS14. That the process was not fully mature at that
point had important implications on the electrical characterization and debugging effort. Special care had to be taken to
distinguish between the different types of problems: design problems, process problems, and design-process interaction
problems.

A fundamental design problem is one that shows up on every lot (a batch of wafers processed together in the fabrication
shop), whatever the process parameters for that lot might be. For example, a really slow path on the chip may have some
frequency variation from lot to lot, but will show up on every lot.

Process problems show up on some lots. The most common symptom is poor functional yield. Sometimes, however, the
symptom can be a subtle electrical failure that is hard to debug. For example, one problem manifested itself as a race
between the falling edge of a latching signal and new data to the latch. SPICE simulations showed that the failure could
occur only under abnormally unbalanced loads and clock skews, which were unrealistic.

http://www.hp.com/hpj/feb96/fb96a3.html
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A design-process interaction problem shows up to varying degrees on different lots. It points to a design that is not very
robust and is treated very much like a design problem. However, typically there tends to be some set of process conditions
that aggravate the problem. Tighter process controls or retargetting the process slightly can reduce the impact of such
problems temporarily, but the long-term solution is always to fix the design to make it more robust. For example, some
coupling issues on the PA 7200 occurred only at one corner of the process. By retargetting the process to eliminate that
corner, the survival yield was significantly increased.

The shrink process mentioned earlier had given us tremendous benefits in terms of flexibility and the ability to leverage
existing circuits. However, effort was also spent in identifying circuits that did not shrink very well. These circuits were
given special care and modified when the decision to use CMOS14 was made. Overall, the shrink effort was very successful
largely because of the scalability of CMOS designs. However, the characterization and debugging phase exposed some
interesting new limitations on the scalability of CMOS designs. When a shrink-related problem circuit was found, the chip
was scanned for other circuits that could have a similar problem. These circuits were then fixed to prevent future problems.

Throughout the project, the team always tracked down problems to their root causes. This approach guaranteed complete
fixes for problems and kept them from ever showing up again. The result is high-quality bug-free parts and high yields in
manufacturing.

In addition to finding and fixing problems in the design, there was also a related activity that happened in parallel. Process
parametric data was analyzed in detail for every lot to look for an optimum region in the process. Detailed correlation data
was produced between process parameters and chip characteristics like speed, failing voltages, types of failures, and so on.
Many different experiments with process parameters and masks were also tried, including polysilicon biases, metal
thicknesses, and others. This enabled us to fine-tune the process to increase the margins, yields, and quality of the product.

Conclusion
With the increasing complexity of VLSI chips, specifically CPUs, design verification has become a critical and challenging
task. This paper has described the methodology and techniques used to verify the PA 7200 CPU. The approaches used
yielded very good results and led to the efficient detection and isolation of problems on the chip. This has enabled
Hewlett-Packard to achieve high-quality, volume shipments in a timely manner.
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A New Memory System Design for

Commercial and Technical Computing

Products

This new design is targeted for use in a wide range of HP
commercial servers and technical workstations. It offers improved
customer application performance through improvements in
capacity, bandwidth, latency, performance scalability, reliability,
and availability. Two keys to the improved performance are
system-level parallelism and memory interleaving.

by Thomas R. Hotchkiss, Norman D. Marschke, and Richard M. McClosky

Initially used in HP 9000 K-class midrange commercial servers and J-class high-end technical workstations, the J/K-class
memory system is a new design targeted for use in a wide range of HP’s commercial and technical computing products, and
is expected to migrate to lower-cost systems over time. At the inception of the memory design project, there were two major
objectives or themes that needed to be addressed. First, we focused on providing maximum value to our customers, and
second, we needed to maximize HP’s return on the development investment.

The primary customer value proposition of the J/K-class memory system is to maximize application performance over a
range of important cost points. After intensive studies of our existing computing platforms, we determined that memory
capacity, memory bandwidth, memory latency, and system-level parallelism were key parameters for improving customer
application performance. A major leap in memory bandwidth was achieved through system-level parallelism and memory
interleaving, which were designed into the Runway bus and the memory subsystem. A system block diagram of an HP 9000
K-class server is shown in Fig. 1 in Article 1. The Runway bus (Article 2) is the “information superhighway” that connects
the CPUs, memory, and I/O systems. System-level parallelism and memory interleaving means that multiple independent
memory accesses can be issued and processed simultaneously. This means that a CPU’s access to memory is not delayed
while an I/O device is using memory. In a Runway-based system with the J/K-class memory system, multiple CPUs and I/O
devices can all be accessing memory in parallel. In contrast, many of HP’s earlier computing platforms can process only one
memory transaction at a time.

Another important customer value proposition is investment protection through performance scalability. Performance
scalability is offered in two dimensions: symmetric multiprocessing and processor technology upgrades to the forthcoming
PA 8000 CPU. The J/K-class memory system provides the memory capacity and bandwidth needed for effective performance
scaling in four-way multiprocessing systems. Initially, Runway-based systems will be offered with the PA-7200 CPU (see
Article 3), and will be upgradable to PA 8000 CPU technology with a simple CPU module exchange. The J/K-class memory
system will meet the demanding performance requirements of the PA 8000 CPU.

Performance is only one part of overall system value. Another major component of system value is cost. For example, the
use of commodity DRAM technology was imperative because competitive memory pricing is an absolute requirement in the
cost-sensitive workstation marketplace. The J/K-class memory system provides lasting performance with commodity
memory pricing and industry-leading price/performance. Low cost was achieved by using mature IC processes, commodity
DRAM technology, and low-cost chip packaging. A closely coupled system design approach was combined with a
structured-custom chip design methodology that allowed the design teams to focus custom design efforts in the areas that
provided the highest performance gains without driving up system cost. For example, the system PC boards, DRAM memory
modules, and custom chip I/O circuits were designed and optimized together as a single highly tuned system to achieve
aggressive memory timing with mature, low-cost IC process and chip packaging technologies.

A further customer value important in HP computing products is reliability and availability. The J/K-class memory system
delivers high reliability and availability with HP proprietary error detection and correction algorithms. Single-bit error
detection and correction and double-bit error detection are implemented, of course; these are fairly standard features in
modern, high-performance computer systems. The J/K-class memory system provides additional availability by detecting
single DRAM part failures for ×4 and ×8 DRAM topologies, and by detecting addressing errors. The DRAM part failure
detection is particularly important because single-part failures are more common than double-bit errors. Extensive circuit
simulation and margin and reliability testing ensure a high-quality electrical design that minimizes the occurrence of errors.

http://www.hp.com/hpj/feb96/fb96a1.html
http://www.hp.com/hpj/feb96/fb96a2.html
http://www.hp.com/hpj/feb96/fb96a3.html
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Fig. 1. Entry-level memory system.

Finally, greater system reliability is achieved through complete memory testing at system boot time. Given the large
maximum memory capacity, memory test time was a major concern. When full memory testing takes a long time, customers
may be inclined to disable complete memory testing to speed up the boot process. By using custom firmware test routines
that capitalize on system-level parallelism and the high bandwidth capabilities of the memory system, a full 2G bytes of
memory* can be tested in less than five minutes.

Return on Investment
Large-scale design projects like the J/K-class memory system typically have long development cycles and require large R&D
investments. To maximize the business return on large projects, designs need to provide lasting value and cover a wide
range of products. Return on investment can be increased by improving productivity and reducing time to market.
Leveraging and outsourcing should be used as appropriate to keep HP engineers focused on those portions of the design
that provide maximum business value. The J/K-class memory system project achieved all of these important objectives.

A modular architecture was designed so that different memory subsystem implementations can be constructed using a set
of building blocks with simple, DRAM-technology-independent interfaces. This flexible architecture allows the memory
system to be used in a wide range of products, each with different price and performance points. Given the long

development cycles associated with large VLSI design projects, changing market conditions often require VLSI chips to be
used in products that weren’t specified during the design cycle. The flexible, modular architecture of the J/K-class memory
system increases the design’s ability to succeed in meeting unforeseen market requirements. Simple interfaces between
modules allow components of the design to be leveraged easily into other memory design projects. Thus, return on
investment is maximized through flexibility and leverage potential.

Reducing complexity is one of the most powerful techniques for improving time to market, especially with geographically
diverse design teams and concurrent engineering. A single critical bug discovered late in the development cycle can easily
add a month or more to the schedule. In the J/K-class memory project, design complexity was significantly reduced by
focusing on the business value of proposed features. The basic philosophy employed was to include features that provide
80% to 90% of the customer benefits for 20% of the effort; this is the same philosophy that drove the development of RISC
computer architectures. 

* HP Journal memory size convention:
1 kbyte = 1,000 bytes 1K bytes = 1,024 bytes
1 Mbyte = 1,000,000 bytes 1M bytes  = 1,048,576 bytes
1 Gbyte = 1,000,000,000 bytes 1G bytes = 1,073,741,824 bytes
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The dedication to reduced complexity coupled with a strong commitment to design verification produced excellent results.
After the initial design release, only a single functional bug was fixed in three unique chips.

Several methods were employed to increase productivity without sacrificing performance. First, the memory system
architecture uses a “double-wide, half-speed” approach. Most of the memory system runs at half the frequency of the
high-speed Runway bus, but the data paths are twice as wide so that full Runway bandwidth is provided.

This approach, coupled with a structured-custom chip design methodology, made it possible to use highly automated design
processes and a mature IC process. Custom design techniques were limited to targeted portions of the design that provided
the greatest benefits. Existing low-cost packaging technologies were used and significant portions of the design were
outsourced to third-party partners. Using all these techniques, high performance, low cost, and high productivity were
achieved in the J/K-class memory system design project.

Wide Range of Implementations
The memory system design for the J/K-class family of computers covers a wide range of memory sizes from 32M bytes in the
entry-level workstation (Fig. 1) to 2G bytes in the fully configured server (Fig. 2). Expandability is achieved with plug-in
dual-inline memory modules that each carry 36 4M-bit or 16M-bit DRAMs. (Note: Even though the memory modules are
dual-inline and can be called DIMMs, we usually refer to them as SIMMs, or single-inline memory modules, because this
terminology is so commonly used and familiar.) Because each DRAM data bus in the memory system is 16 bytes wide, the
8-byte wide SIMMs are always installed in pairs. Using the 4M-bit DRAMs, each pair of SIMMs provides 32M bytes of
memory; and with 16M-bit DRAMs, a pair of SIMMs provides 128M bytes of memory.
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Memory Address Bus
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Fig. 2. High-performance HP 9000 Model K400 memory system.

In an entry-level workstation, the memory can start at 32M bytes (one pair of SIMMs with 4M-bit DRAMs) and be expanded
up to 512M bytes (using 4 pairs of SIMMs with 16M-bit DRAMs) as shown in Fig. 1. The HP 9000 J-class workstation can be
expanded to 1G bytes of memory using eight pairs of SIMMs with 16M-bit DRAMs. The HP 9000 Model K400 server can be
expanded up to 2G bytes using 16 pairs of SIMMs with 16M-bit DRAMs installed in two memory carriers.

Design Features
The J/K-class memory system design consists of a set of components or building blocks that can be used to construct a
variety of high-performance memory systems. A primary goal of the memory system is to enable system designers to build
high-bandwidth, low-latency, low-cost memory systems. Major features of the design are:
� High performance

� 36-bit real address (32G bytes)

� Support for 4M-bit, 16M-bit, and 64M-bit DRAM technology

� Proven electrical design up to 2G bytes of memory with 16M-bit DRAMs (up to 8G bytes with 64M-bit DRAMs when
available)

� Logical design supports up to 8G bytes with 16M-bit DRAMs and up to 32G bytes with 64M-bit DRAMs

� Minimum memory increment of 32M bytes with 1M×4-bit (4M-bit) DRAMs (2 banks of memory on 2 SIMMs)

� 32-byte cache lines

� Memory interleaving: 4-way per slave memory controller, electrically proven up to 32-way with logical maximum
of 128-way interleaving
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� Single-bit error correction, double-bit error detection, and single-DRAM device failure detected for ×4 and ×8 parts

� Address error detection

� Error detection, containment, and reporting when corrupt data is received

� Memory test and initialization less than 5 minutes for 2G bytes of memory

� Soft-error memory scrubbing and page deallocation implemented with software

� 16-byte and 32-byte write access to memory

� IEEE 1149.1 boundary scan in all VLSI parts.

Memory System Description
A block diagram for a high-performance HP 9000 Model K400 memory system is shown in Fig. 2. The memory system has
four major components: the master memory controller (MMC), multiple slave memory controllers (SMC), a data
accumulator/multiplexer (DM), and plug-in memory modules (SIMMs). The memory system design allows many possible
configurations, and the high-performance Model K400 system is an example of a large configuration.

The basic unit of memory is called a bank. Each bank of memory is 16 data bytes wide and can be addressed independently
of all other banks. A 32-byte processor cache line is read or written in two segments using fast-page-mode accesses to a
bank. Two 16-byte segments are transferred to or from a bank to make up one 32-byte cache line.

Each slave memory controller (SMC) supports up to four independent memory banks. Memory performance is highly
dependent on the number of banks, so the SIMMs are designed so that each SIMM contains eight bytes of two banks. Since a
bank is 16 bytes wide, the minimum memory increment is two SIMMs, which yields two complete banks. An additional 16
bits of error correction code (ECC) is included for each 16 bytes (128 bits) of data. Thus, a memory data bus carrying 16
bytes of data requires 144 bits total (128 data bits + 16 ECC bits).

The 16-byte-wide memory data bus, which connects the master memory controller (MMC) to the data multiplexer (DM) chip
set, operates at 60 MHz for a peak bandwidth of 960 Mbytes/s. Memory banks on the SIMM sets are connected to the DM
chip set via 16-byte RAM data buses (RD_A and RD_B), which operate at 30 MHz, yielding a peak bandwidth of 480 Mbytes/s.
However, these data buses are independent, so if memory access operations map to alternate buses, the peak bandwidth
available from RD_A and RD_B equals that of the memory data bus. The actual bandwidth will depend on the memory access
pattern, which depends on the system workload.

The set of signals connecting the MMC to the SMC chips and DM chips is collectively known as the memory system
interconnect (MSI) bus. It is shown in Fig. 2 as the memory address bus and the MUX data bus.

A 32-byte single cache line transfer requires two cycles of data on the RAM data and MSI buses. Since the RAM data bus
operates at one-half the frequency of the MSI bus, the data multiplexer chips are responsible for accumulating and
distributing data between the MUX data bus and the slower RAM data buses. To reduce the cost of the data MUX chips, the
design of the chip set is bit-sliced into four identical chips. Each DM chip handles 36 bits of data and is packaged in a
low-cost plastic quad flat pack.

Two sets of DM chips are shown in Fig. 2, and four SMC chips are associated with each DM set. Logically, the MSI protocol
supports up to 32 total SMC chips, up to 32 SMC chips per DM set, and any number of DM sets. Presently, memory systems
having up to eight SMC chips and two DM sets have been implemented.

VLSI Chips
Master Memory Controller. Each memory system contains a single master memory controller. The MMC chip is the core of the
memory system. It communicates with the processors and the I/O subsystem over the Runway bus, and generates basic
memory accesses which are sent to the slave memory controllers via the MSI bus.

Slave Memory Controller. A memory system contains one or more SMC chips, which are responsible for controlling the DRAM
banks based on the accesses generated by the MMC. The partitioning of functionality between the MMC and SMC has been
carefully designed to allow future support of new types of DRAMs without modification to the MMC. The motivation for
this is that the MMC is a large complex chip and would require a large engineering effort to redesign or modify. The SMC
and DM chips are much simpler and can be redesigned with less effort on a faster schedule. The memory system design is
partitioned so that the MMC does not contain any logic or functionality that is specific to a particular type of DRAM. The
following logic and functionality is DRAM-specific and is therefore included in the SMCs:
� DRAM timing

� Refresh control

� Interleaving

� Memory and SIMM configuration registers

� DM control.

Each SMC controls up to four banks of memory.
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Operation of the DRAMs is controlled by multiple slave memory controllers which receive memory access commands from
the system bus through the master memory controller. Commands and addresses are received by all SMCs. A particular
SMC responds only if it controls the requested address and subsequently drives the appropriate DRAMs with the usual row
address strobe (RAS) and column address strobe (CAS).

The slave memory controller chips have configuration registers to support the following functions:
� Interleaving

� Bank-to-bank switching rates

� Programmable refresh period

� SIMM sizes

� Programmable DRAM timing

� SMC hardware version number (read only)

� SMC status registers for latching MSI parity errors.

Memory refresh is performed by all of the SMCs in a staggered order so that refresh operations are nonsimultaneous.
Staggered refresh is used to limit the step load demands on the power supply to minimize the supply noise that would be
caused by simultaneously refreshing all DRAMs (up to 1152 in a Model K400 system). This lowers overall system cost by
reducing the design requirement for the power supply.

Data Multiplexer Chip Set. The DM chips are responsible for accumulating, multiplexing, and demultiplexing between the
16-byte memory data bus and the two independent 16-byte RAM data buses. They are used only in high-performance
memory systems with more than eight banks of memory.

Dual-Inline Memory Modules
The dual-inline memory modules (called SIMMs) used in this design are 72 bits wide (64 data bits + 8 ECC bits) organized
into two half-banks as shown in Fig. 3. With 72 bits of shared data lines and two independent sets of address and control
lines, they hold twice as much memory and supply twice as many data bits as the common single-inline memory modules
used in personal computers. Two SIMMs are used to form two fully independent 16-byte banks of memory. Each SIMM holds
36 4-bit DRAMs—18 DRAMs for each half-bank. Using 36 1M×4-bit DRAMs, each SIMM provides 16M bytes of memory. With
4M×4-bit DRAMs, each SIMM holds 64M bytes. To connect all of the data, address, and control signals, a 144-pin dual-inline
socket is used (not compatible with the 72-pin SIMMs used in PCs).

4.25 in

1 36 37 72
Data [0:35] Data [36:71]

1.
85

 in

Upper
Half
Bank

Lower
Half
Bank

Address AddressControl

Control
0 10

1

Fig. 3. Diagram of the dual-inline memory module (called a SIMM because its function is similar

to the familiar single-inline memory modules used in PCs).

The motivation for designing our own memory module rather than using an industry-standard SIMM was memory capacity
and performance. We would have needed twice as many PC SIMMs for an equivalent amount of memory. This would create
a physical space problem because twice as many connectors would be needed, and would create performance problems
because of the increased printed circuit board trace lengths and unterminated transmission line stubs.

However, our custom SIMM is expected to become “industry available.” There are no custom VLSI chips included on our
SIMMs, so third-party suppliers can clone the design and offer memory to HP customers. This is very important because
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having multiple suppliers selling memory to our customers ensures a market-driven price for memory rather than
proprietary pricing. HP customers now demand competitive memory pricing, so this was a “must” requirement for the
design.

Banks and Interleaving
Each SMC has four independent bank controllers that perform a double read or write operation to match the 16-byte width
of the RAM data path to the 32-byte size of the CPU cache line. Thus each memory access operation to a particular bank is a
RAS-CAS-CAS* sequence for reading two successive memory locations, using the fast-page-mode capability of the DRAMs. A
similar sequence to another bank can overlap in time so that the -CAS-CAS portion of the second bank can follow
immediately after the RAS-CAS-CAS of the initial bank. This is interleaving.

N-way interleaving is implemented, where N is a power of 2. The total number of banks in an interleave group is not
necessarily a power of 2. When the number of banks is a power of 2, then the bank select for a given physical address is
determined by the N low-order bits of the physical address. All banks within an interleave group must be the same size.
Memory banks from different-size SIMMs can be installed in the same memory subsystem, but they must be included in
different interleave groups.

When the number of banks installed is not a power of 2, the interleaving algorithm is specially designed to provide a
uniform, nearest-power-of-2 interleaving across the entire address range. For example, if you install six banks of the same
size, you will get 4-way interleaving across all six banks rather than 4-way interleaving across 4/6ths of the memory and
2-way interleaving across 2/6ths of the memory. This special feature prevents erratic behavior when nonpower-of-2 numbers
of banks are installed.

Soft Errors and Memory Scrubbing
DRAM devices are known to lose data periodically at single-bit locations because of alpha particle hits. The rate of
occurrence of these soft errors is expected to be one every 1 million hours of operation. A fully configured 2G-byte memory
system uses 1152 (32×36) DRAM devices. Thus, a soft single-bit error is expected to occur once every 868 hours or ten times
per year in normal operation. Single-bit errors are easily corrected by the MMC when the data is read from the memory
using the ECC bits. Single-bit errors are corrected on the fly with no performance degradation. At memory locations that are
seldom accessed, the occurrence of an uncorrectable double-bit error is a real threat to proper system operation. To
mitigate this potential problem,

memory-read operations are periodically performed on all memory locations to find and correct any single-bit errors before
they become double-bit errors. This memory scrubbing software operation occurs in the background with virtually no
impact on system performance.

Sometimes when a particular DRAM device has a propensity for soft errors or develops a hard (uncorrectable) error, then
that area of memory is deemed unusable. The memory is segmented into 64K-byte pages. When any location within a
particular page is deemed unusable, then that entire page is deallocated from the inventory of available memory and not
used. Should the number of deallocated pages become excessive, the respective SIMM modules are deemed faulty and must
be replaced at a convenient service time.

Memory Carrier Board
The memory carrier board (Fig. 4) is designed to function with HP 9000 K-class and J-class computer systems. The larger
K-class system can use up to two memory carrier boards, while the smaller J-class system contains only one board, which is
built into the system board. Each memory carrier board controls from two to sixteen SIMMs. This allows each memory
carrier board to contain from 32M bytes to 1G bytes of memory.

There are four data multiplexer chips on the memory carrier board. These multiplex the two 144-bit RAM data buses (RD_A
and RD_B) to the single 144-bit MSI data path to the MMC chip. They also provide data path timing. Four SMC components
on the memory carrier board provide the MSI interface control, DRAM control and timing, data MUX control, refresh timing
and control, and bank mapping.

The memory carrier board is designed with maximal interleaved memory access in mind. Each SMC controls four SIMM
pairs (actually only four banks because there are two banks on each SIMM pair) and one data bus set (two of four 72-bit
parallel RAM data buses). Each data MUX controls 36 bits of each RAM data bus and 36 bits of the MSI bus. Each SIMM has
two address buses (one for each bank) and one 72-bit RAM data Bus. For example, SMC 0 controls SIMM pairs 0a/b, 5a/b,
6a/b, and 3a/b, using the RD_A0(0:71) bus for the SIMMs in the “a” connectors and the RD_A1(0:71) bus for the SIMMs in the “b”
connectors.

* RAS = Row address strobe.
CAS = Column address strobe.
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Each SIMM has two address buses and one 72-bit data bus.
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c0 A2 c1
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Fig. 4. Memory carrier board architecture. Each SIMM has two address buses and one 72-bit data bus.

Memory Read or Write Operations
The memory carrier board operates on basically one kind of memory transaction: a 32-byte read or write to a single bank
address. This board will also handle a 16-byte read or write operation; the timing and addressing are handled just like a
32-byte operation except that the CAS signal for the unused 16-byte half is not asserted.

To perform a memory read or write operation the following sequence of events occurs. First, an address cycle on the
Runway bus requests a memory transaction from the memory subsystem. This part of the operation is taken care of by the
MMC. The MMC chip then places this address onto the MSI bus along with the transaction type code (read or write). All the
SMCs and the MMC latch this address and transaction code and place this information into their queues. Each SMC and the
MMC chip must keep an identical set of transaction requests in their queues; this is how data is synchronized for each
memory operation (the SMCs operate in parallel and independently on separate SIMMs).
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Once the address is loaded into their queues, the SMCs check to see if the address matches one of the banks that they
control. The SMC that has a match will then start an access to the matching bank if that bank is not already in use. The other
SMCs could also start other memory accesses in parallel provided there are no conflicts with banks currently in use.

The memory access starts with driving the row address to the SIMMs followed by the assertion of RAS. The SMC then drives
the column address to the same SIMMs. This is followed by the assertion of CAS and output enable or write enable provided
that the data buses are free to be used. At this time the SMC sends the MREAD signal or the MWRITE signal to the data MUX
chips to tell them which direction the data will be traveling. The TACK (transaction acknowledged) signal is toggled by the
SMC to tell the MMC chip to supply data if this is a write operation or receive data if this is a read operation. When TACK
changes state all of the other SMCs and the MMC step up their queues because this access will soon be completed.

Once the MMC chip supplies the write data to the data MUXs or receives the data from the data MUXs on a read operation, it
completes the transaction on the Runway bus. The memory system can have up to eight memory transactions in progress at
one time and some of them can be overlapped or paralleled at the same time.

The timing for a single system memory access (idle state) in a J/K-class system breaks down as follows (measuring from the
beginning of the address cycle on the Runway bus to the beginning of the first data cycle and measuring in Runway cycles):

Cycles Operations during these Cycles

1 Address cycle on Runway bus
2 Address received at MMC to address driven on MSI bus (actually 1.5 or 2.5 cycles, each with 50% probability)
2 Address on MSI bus
2 SMC address in to RAS driven to DRAMs
6 RAS driven to output enable driven
4 Output enable driven to first data valid at data MUX input
4 First data valid at data MUX input to data driven by data MUX on MSI bus. With EDO (extended data out) DRAMS

this time is reduced to 2 cycles.
2 Data on MSI bus
2.5 Data valid at MMC input to data driven on Runway bus (includes ECC, synchronization, etc.)
25.5 Total cycles delay from address on Runway bus to data on Runway bus for a read operation.

Register accesses to SMC chips are very similar to memory accesses except that the register data values are transferred on
the MSI address bus instead of the MSI data bus.

Board Design Challenges
Early in the board design it became clear that because of the number of SIMMs and the physical space allocated to the
memory carrier board, the design would not work without some clever board layout and VLSI pinout changes. After several
different board configurations (physical shape, SIMM placements, through-hole or surface mount SIMM connectors, SMCs
and data MUX placements) were evaluated, the final configuration of 16 SIMMs, four data multiplexers, and four SMCs on
each of two boards was chosen.

Given the very tight component spacing required with this configuration, the pinouts of the data MUX and SMC chips had to
be chosen carefully. The pinout of the data MUX chip was chosen so that the RAM data buses from the SIMMs and the MSI
data bus to the connector were “river routable” (no trace crossing required). The pinout of the SMC chip was chosen with
the layout of the SIMMs in mind. It also had to be possible to mount both chips on the backside of the board and still meet
the routing requirements. Being able to choose chip pinouts to suit board layout requirements is one of the many advantages
of in-house custom chip designs. Without this ability it is doubtful that this memory carrier board configuration would be
possible. This is another example of closely coupled system design.

One of the goals for this design was to have a board that could be customer shippable on first release (no functional or
electrical bugs). To meet this goal a lot of effort was placed on simulating the operating environment of the memory
subsystem. By doing these simulations, both SPICE and functional (Verilog, etc.), electrical and functional problems were
found and solved before board and chip designs were released to be built.

For example, major electrical cross talk problems were avoided through the use of SPICE simulations. In one case, four
72-bit buses ran the length of the board (about 10.5 inches) in parallel. Each trace was 0.005 inch wide and the traces were
spaced 0.005 inch apart on the same layer (standard PCB design rules) with only 0.0048 inch of vertical separation between
layers. Five-wire mutually coupled memory carrier board and SIMM board models for SPICE were created using HP VLSI
design tools. When this model set was simulated, the electrical cross talk was shown to be greater than 60% and would have
required a major board redesign to fix when found after board release. The solution was to use a 0.007-inch minimum
spacing between certain wires and to use a nonstandard board layer stack construction that places a ground plane between
each pair of signal layers.

The memory carrier board uses several unusual technologies. For example, the board construction (see Fig. 5) is designed to
reduce interlayer cross talk between the RD_A and RD_B data buses. As a result of this board layering, the characteristic
impedance of nominal traces is about 38 ohms for both the inner and outer signal layers. The nominal trace width for both
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inner and outer signal layers is 0.005 inch with 0.005-inch spacing on the outer layers and 0.007-inch spacing on the inner
layers to reduce coupling between long parallel data signals.

The early SPICE and functional simulation effort paid off. No electrical or functional bugs were found on the memory
carrier board, allowing the R&D revision 1 board design to be released as manufacturing release revision A.

Another new technology used on the memory carrier board is the BERG Micropax connector system. The Micropax
connector system was selected because of its controlled impedance for signal interconnect and the large number of
connections per inch. However, for these very same reasons the connector system requires extremely tight tolerances when
machining the edge of the board containing the connectors.

A new manufacturing process used by the memory carrier board, the HP 2RSMT board assembly process, was developed to
allow the surface mounting of extra-fine-pitch VLSI components on both sides of the board along with the through-hole
SIMM connectors.
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Fig. 5. Printed circuit board construction.
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Hardware Cache Coherent Input/Output

Hardware cache coherent I/O is a new feature of the PA-RISC
architecture that involves the I/O hardware in ensuring cache
coherence, thereby reducing CPU and memory overhead and
increasing performance.

by Todd J. Kjos, Helen Nusbaum, Michael K. Traynor, and Brendan A. Voge

A new feature, called hardware cache coherent I/O, was introduced into the HP PA-RISC architecture as part of the HP 9000
J/K-class program. This feature allows the I/O hardware to participate in the system-defined cache coherency scheme,
thereby offloading the memory system and processors of unnecessary overhead and contributing to greater system
performance. This paper reviews I/O data transfer, introduces the concept of cache coherent I/O from a hardware
perspective, discusses the implications for HP-UX* software, illustrates some of the benefits realized by HP’s networking
products, and presents measured performance results.

I/O Data Transfer
To understand the impact of the HP 9000 J/K-class coherent I/O implementation, it is necessary to take a step back and get a
high-level view of how data is transferred between I/O devices and main memory on HP-UX systems.

There are two basic models for data transfer: direct memory access (DMA) and programmed I/O (PIO). The difference
between the two is that a DMA transfer takes place without assistance from the host processor while PIO requires the host
processor to move the data by reading and writing registers on the I/O device. DMA is typically used for devices like disks
and LANs which move large amounts of data and for which performance is important. PIO is typically used for low-cost
devices for which performance is less important, like RS-232 ports. PIO is also used for some high-performance devices like
graphics frame buffers if the programming model requires it.

All data transfers move data either to main memory from an I/O device (inbound) or from main memory to an I/O device
(outbound). These transfers require one or more transactions on each bus between the I/O device and main memory. Fig. 1
shows a typical PA-RISC system with a two-level bus hierarchy. PA-RISC processor-to-memory buses typically support
transactions in sizes that are powers of 2, up to 32 bytes, that is, READ4, WRITE4, READ8, WRITE8, READ16, WRITE16, READ32,
WRITE32, where the number refers to the number of bytes in the transaction. Each transaction has a master and a slave; the
master initiates the transaction and the slave must respond. Write transactions move data from the master to the slave, and
read transactions cause the slave to respond with data for the master.

Memory

I/O
Adapter

CPU CPU

CPUCPU

Fast/Wide
SCSI

IEEE
802.3

Core I/O

RS-232
ATM

FDDI
Fibre

Channel

Processor-Memory Bus (Runway)

I/O Bus (HP-HSC) I/O Bus (HP-HSC)

Fig. 1. Typical PA-RISC system with a two-level bus hierarchy.

The processor is always the master for PIO transactions to the I/O device. An I/O device is always the master for a DMA
transaction. For example, if a software device driver is reading (PIO) a 32-bit register on the fast/wide SCSI device shown in
Fig. 1, it causes the processor to master a READ4 transaction to the device, which results in the I/O adapter mastering a
READ4 transaction on the I/O bus, where the fast/wide SCSI device responds with the four bytes of data. If the Fibre Channel
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interface card is programmed to DMA transfer 4K bytes of data from memory to the disk, it will master 128 READ32
transactions to get the data from memory. The bridge forwards transactions in both directions as appropriate.

Because PIO transactions are not in memory address space and are therefore not a coherency concern, the rest of this
article discusses DMA transactions only. The coherent I/O hardware has no impact at all on I/O software device drivers that
interact with devices via PIO exclusively.

Hardware Implications
Cache memory is defined as a small, high-speed block of memory located close to the processor. On the HP PA 7200 and PA
8000 processors, a portion of the software virtual address (called the virtual index) is used as the cache lookup. Main
memory is much larger and slower than cache. It is accessed using physical addresses, so a virtual-to-physical address
translation must occur before issuing any request to memory. Entries in the PA 7200 and PA 8000 caches are stored in lines
of 32 bytes. Since data that is referenced once by the processor is likely to be referenced again and nearby data is likely to
be accessed as well, the line size is selected to optimize the frequency with which it is accessed while minimizing the
overhead associated with obtaining the data from main memory. The cache contains the most recently accessed lines,
thereby maximizing the rate at which processor-to-memory requests are intercepted, ultimately reducing latency.

When a processor requests data (by doing loads), the line containing the data is copied from main memory into the cache.
When a processor modifies data (by doing stores), the copy in the cache will become more up-to-date than the copy in
memory. HP 9000 J/K-class products resolve this stale data problem by using the snoopy cache coherency scheme defined in
the Runway bus protocol. Each processor monitors all Runway transactions to determine whether the virtual index
requested matches a line currently stored in its cache. This is called “snooping the bus.” A Runway processor must own a
cache line exclusively or privately before it can complete a store. Once the store is complete, the cache line is considered
dirty relative to the stale memory copy. To maximize Runway bus efficiency, processors are not required to write this stale
data back to memory immediately. Instead, the write-back operation occurs when the cache line location is required for use
by the owning processor for another memory access. If, following the store but before the write-back, another processor
issues a read of this cache line, the owning processor will snoop this read request and respond with a cache-to-cache copy
of the updated cache line data. This data is then stored in the requesting processor’s cache and main memory.

Since the I/O system must also read (output) and modify (input) memory data via DMA transactions, data consistency for
the I/O system must be ensured as well. For example, if the I/O system is reading data from memory (for outbound DMA)
that is currently dirty in a processor’s cache, it must be prevented from obtaining a stale, out-of-date copy from memory.
Likewise, if the I/O system is writing data to memory (for inbound DMA), it must ensure that the processor caches acquire
this update. The optimum solution not only maintains consistency by performing necessary input/output operations while
preventing the transfer of any stale copies of data, but also minimizes any interference with CPU cycles, which relate
directly to performance.

Cache coherence refers to this consistency of memory objects between processors, memory modules, and I/O devices. HP
9000 systems without coherent I/O hardware must rely on software to maintain cache coherency. At the hardware level, the
I/O device’s view of memory is different from the processor’s because requested data might reside in a processor’s cache.
Typically, processor caches are virtually indexed while I/O devices use physical addresses to access memory. Hence there is
no way for I/O devices to participate in the processor’s coherency protocol without additional hardware support in the I/O
adapter.

Some architectures have prevented stale data problems by implementing physically indexed caches, so that it is the physical
index, not the virtual index, that is snooped on the bus. Thus, the I/O system is not required to perform a physical-to-virtual
address translation to participate in the snoopy coherence protocol. On the HP 9000 J/K-class products, we chose to
implement virtually indexed caches, since this minimizes cache lookup time by eliminating a virtual-to-physical address
translation before the cache access.

Other architectures have avoided the output stale data problem by implementing write-through caches in which all
processor stores are immediately updated in both the cache and the memory. The problem with this approach is its high use
of processor-to-memory bus bandwidth. Likewise, to resolve the input stale data problem, many architectures allow cache
lines to be marked as uncacheable, meaning that they can never reside in cache, so main memory will always have correct
data. The problem with this approach is that input data must first be stored into this uncacheable area and then copied into
a cacheable area for the processor to use it. This process of copying the data again consumes processor-to-memory cycles
for nonuseful work.

Previous implementations of HP’s PA-RISC processors circumvent these problems by making caches visible to software. On
outbound DMA, the software I/O device drivers execute flush data cache instructions immediately before output operations.
These instructions are broadcast to all processors and require them to flush their caches by writing the specified dirty cache
lines back to main memory. After the DMA buffer has been flushed to main memory, the outbound operation can proceed
and is guaranteed to have the most up-to-date data. On inbound DMA, the software I/O device drivers execute broadcast
purge data cache instructions just before the input operations to remove the DMA buffer from all processor caches in the
machine. The PA-RISC architecture’s flush data cache and purge data cache instruction overhead is small compared to the
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performance impact incurred by these other schemes, and the I/O hardware remains ignorant of the complexities associated
with coherency.

I/O Adapter Requirements. The HP 9000 J/K-class products and the generation of processors they are designed to support
place greater demands on the I/O hardware system, ultimately requiring the implementation of cache coherent I/O hardware
in the I/O bus adapter, which is the bus converter between the Runway processor-memory bus and the HP-HSC I/O bus. The
first of these demands for I/O hardware cache coherence came from the design of the PA 7200 and PA 8000 processors and
their respective implementations of cache prefetching and speculative execution. The introduction of these features would
have required software I/O device drivers to purge inbound buffers twice, once before the DMA and once after the DMA
completion, thus doubling the performance penalty. Because aggressive prefetches into the DMA region could have
accessed stale data after the purge but before the DMA, the second purge would have been necessary after DMA completion
to cleanse stale data prefetch buffers in the processor. By designing address translation capabilities into the I/O adapter, we
enable it to participate in the Runway snoopy protocol. By generating virtual indexes, the I/O adapter enables processors to
compare and detect collisions with current cache addresses and to purge prefetched data aggressively before it becomes
stale.

Another demand on the I/O adapter pushing it in the direction of I/O cache coherence came from the HP 9000 J/K-class
memory controller. It was decided that the new memory controller would not implement writes of less than four words.
(These types of writes would have required read-modify-write operations in the DRAM array, which have long cycle times
and, if executed frequently, degrade overall main memory performance.) Because one-word writes occur in the I/O system,
for registers, semaphores, or short DMA writes it was necessary that the I/O adapter implement a one-line-deep cache to
buffer cache lines, so that these one-word writes could be executed by performing a coherent read private transaction on
the Runway bus, obtaining the most recent copy of the cache line, modifying it locally in cache, and finally writing the
modified line back to main memory. For the I/O adapter to support a cache on the Runway bus, it has to have the ability to
compare processor-generated virtual address transactions with the address contained in its cache to ensure that the
processors always receive the most up-to-date data.

To simplify the design, the I/O adapter implements a subset of the Runway bus coherency algorithm. If a processor requests
a cache line currently held privately by the I/O adapter, the I/O adapter stalls the coherency response, finishes the
read-modify-write sequence, writes the cache line back to memory, and then responds with COH_OK, meaning that the I/O
adapter does not have a copy of this cache line. This was much simpler to implement than the processor algorithm, which
on a conflict responds with COH_CPY, meaning that the processor has this cache line and will issue a cache-to-cache copy
after modifying the cache line. Since the I/O adapter only has a one-line cache and short DMA register and semaphore writes
are infrequent, it was felt that the simpler algorithm would not be a performance issue.

A final requirement for the I/O adapter is that it handle 32-bit I/O virtual addresses on the HP-HSC bus and a larger 40-bit
physical address on the Runway bus to support the new processors. Thus a mapping function is required to convert all
HP-HSC DMA transactions. This is done via a lookup table in memory, set up by the operating system, called the I/O page
directory. With minor additional effort, I/O page directory entries were defined to provide the I/O adapter with not only the
40-bit physical address, but also the software virtual index. This provides all the information necessary for the I/O adapter to
be a coherent client on the Runway bus. The I/O adapter team exploited the mapping process by implementing an on-chip
TLB (translation lookaside buffer), which caches the most recent translations, to speed the address conversion, and by
storing additional attribute bits into each page directory entry to provide clues about the DMA’s page destination, thereby
allowing further optimization for each HP-HSC-to-Runway transaction.

I/O TLB Access. The mechanism selected for accessing the I/O TLB both minimizes the potential for thrashing and is flexible
enough to work with both large and small I/O systems. (Thrashing occurs when two DMA streams use the same TLB RAM
location, each DMA transaction alternately casting the other out of the TLB, resulting in tremendous overhead and lower
performance.) Ideally, each DMA stream should use a different TLB RAM location, so that only one TLB miss read is done
per page of DMA.

We implemented a scheme by which the upper 20 bits of the I/O virtual address are available to be divided into a chain ID

and a block ID (Fig. 2). The lower 12 bits of the address must be left alone because of the 4K-byte page size defined by the
architecture. The upper address bits (chain ID) of the I/O virtual address are used to access the TLB RAM, and the
remainder of the I/O virtual address (block ID) is used to verify a TLB hit (as a tag). This allows software to assign each
DMA stream to a different chain ID and each 4K-byte block of the DMA to a different block ID, thus minimizing thrashing
between DMA streams.

A second feature of this scheme is that it helps limit the overhead of the I/O page directory. Recall that the I/O page
directory contains all active address translations and must be memory-resident. I/O page directory size is equal to the size of
one entry times 2k, where k is the number of chain ID bits plus the number of block ID bits. The division between the chain
ID and the block ID is programmable, as is the total number of bits (k), so software can reduce the memory overhead of the
I/O page directory for systems with smaller I/O subsystems if we guarantee that the leading address bits are zero for these
smaller systems.
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Fig. 2. TLB translation scheme. The upper address bits (chain ID) of the I/O virtual address are used to access the TLB

RAM, and the remainder of the I/O virtual address (block ID) is used to verify a TLB hit (as a tag).

If the translation is not currently loaded in the I/O adapter’s I/O TLB, the I/O adapter reads the translation data from the I/O
page directory and then proceeds with the DMA. Servicing the TLB miss does not require processor intervention, although
the I/O page directory entry must be valid before initiating the DMA.

Attribute Bits. Each mapping of a page of memory has attribute bits (or clues) that allow some control over how the DMA is
performed. The page attribute bits control the enabling and disabling of prefetch for reads, the enabling and disabling of
atomic mode, and the selection of fast DMA or safe DMA.

Prefetch enable allows the I/O adapter to prefetch on DMA reads, thus improving outbound DMA performance. Because the
I/O adapter does not maintain coherency on prefetch data, software must only enable prefetching on pages where there will
be no conflicts with processor-held cache data. Prefetch enable has no effect on inbound DMA writes.

Atomic or locked mode allows a DMA transfer to own all of memory. While an atomic mode transfer is in progress,
processors cannot access main memory. This feature was added to support PC buses that allow locking (ISA, EISA). The
HP-HSC bus also supports this functionality. In almost all cases, atomic mode is disabled, because it has tremendous
performance effects on the rest of the system.

The fast/safe bit only has an effect on half-cache-line DMA writes. However, many I/O devices issue this type of 16-byte
write transaction. In safe mode, the write is done as a read-modify-write transaction in the I/O adapter cache, which is
relatively low in performance. In fast mode, the write is issued as a WRITE16_PURGE transaction which is interpreted by the
processors as a purge cache line transaction and a write half cache line transaction to memory. The fast/safe DMA attribute
is used in the following way. In the middle of a long inbound DMA, fast mode is used: the processor’s caches are purged
while DMA data is moved into memory. This is acceptable because the processor should not be modifying any cache lines
since the DMA data would overwrite the cache data anyway. However, at the beginning or end of a DMA transfer, where the
cache line might be split between the DMA sequence and some other data unrelated to the DMA sequence, the DMA
transaction needs to preserve this other data, which might be held private-dirty by a processor. In such cases, the safe mode
is used. This feature allows the vast majority of 16-byte DMA writes to be done as WRITE16_ PURGEs, which have much
better performance than read-modify-writes internal to the I/O adapter cache. This is the only half-cache-line transaction the
memory subsystem supports. All other memory transactions operate on full cache lines.

HP-UX Implementation
Cache coherent I/O affects HP-UX I/O device drivers. Although the specific algorithm is different for each software I/O
device driver that sets up DMA transactions, the basic algorithm is the same. For outbound DMA on a system without
coherent I/O hardware, the driver must perform the following tasks:
� Flush the data caches to make sure memory is consistent with the processor caches.

� Convert the processor virtual address to a physical address.

� Modify and flush any control structures shared between the driver and the I/O device.
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� Initiate the DMA transfer by programming the device to move the data from the given physical address, using a
device-specific mechanism.

For inbound DMA the algorithm is similar:
� Purge the data cache to prevent stale cache data from being written over DMA data.

� Convert the processor virtual address to a physical address.

� Modify and flush any control structures shared between the driver and the I/O device.

� Initiate the DMA transfer by programming the device to move the data to the given physical address, using a de-
vice-specific algorithm.

When the DMA completes, the device notifies the host processor via an interrupt, the driver is invoked to perform any
post-DMA cleanup, and high-level software is notified that the transfer has completed. For inbound DMA the cleanup may
include purging the data buffer again in case the processor has prefetched the old data.

To support coherent I/O hardware, changes to this basic algorithm could not be avoided. Since coherent I/O hardware
translates 32-bit I/O virtual addresses into processor physical addresses that may be wider than 32 bits, I/O devices must be
programmed for DMA to I/O virtual addresses instead of physical addresses. Also, since coherency is maintained by the
coherent I/O adapter, no cache flushes or purges are necessary and should be avoided for performance reasons. To allow
drivers to function properly regardless of whether the system has coherent I/O hardware, HP-UX services were defined to
handle the differences transparently. There are three main services of interest to drivers: map() is used to convert a virtual
address range into one or more I/O virtual addresses, unmap() is used to release the resources obtained via map() once the
transfer is complete, and dma_sync() is used to synchronize the processor caches with the DMA buffers, replacing explicit
cache flush and purge services. These services are discussed in more detail below.

Drivers had to be modified where one of the following assumptions existed:
� Devices use processor physical addresses to access memory. This assumption is still true for noncoherent systems,

but on HP 9000 J/K-class systems I/O virtual addresses must be used. The map() service transparently returns a
physical address on noncoherent systems and an I/O virtual address on coherent systems.

� Cache management must be performed by software. This is still true for noncoherent systems, but on coherent
systems flushes and purges should be avoided for performance reasons. The dma_sync() service performs the ap-
propriate cache synchronization functions on noncoherent systems but does not flush or purge on coherent sys-
tems.

� The driver does not have to keep track of any DMA resources. Drivers now have to remember what I/O virtual
addresses were allocated to them so they can call unmap() when the DMA transfer is complete.

To accommodate these necessary modifications, the software model for DMA setup has been changed to:
� Synchronize the caches using dma_sync().
� Convert the processor virtual address to an I/O virtual address using the map() service.

� Initiate the DMA transfer via a device-specific mechanism.

� Call the unmap() service to release DMA resources when the DMA transfer is complete.

On noncoherent systems, this has the same effect as before, except that the driver doesn’t know whether or not the cache
was actually flushed or whether the I/O virtual address is a physical address.

For drivers that rely entirely on existing driver services to set up DMA buffers (like most EISA drivers), no changes were
needed since the underlying services were modified to support coherent I/O.

Driver Services: map and unmap.  The map() service and its variants are the only way to obtain an I/O virtual address for a
given memory object. Drivers cannot assume that a buffer can be mapped in a single call to map() unless the buffer is aligned
on a cache line boundary and does not cross any page boundaries. Since it is possible that multiple I/O virtual addresses are
needed to map a DMA buffer completely, map() should be called within a loop as shown in the following C code fragment:

/* Function to map an outbound DMA buffer
* Parameters:
* isc: driver control structure
* space_id: the space id for the buffer
* virt_addr: the virtual offset for the buffer
* buffer_length: the length (in bytes) of the buffer
* iovecs (output): an array of address/length I/O
* virtual address pairs
*
* Output:
* Returns the number of address/length I/O virtual
* address pairs (–1 if error)
*
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*/
int my_buffer_mapper(isc,space_id,virt_addr,buffer_length,iovecs)
struct isc_table_type *isc;
int vec_cnt;
struct iovec *iovecs;
{

int vec_cnt = 0;
struct iovec hostvec;
int retval;

/* Flush cache (on noncoherent systems) */
dma_sync(space_id,virt_addr,buffer_length,IO_SYNC_FORCPU);

/* Set up input for map() */
hostvec–>iov_base = virt_addr;
hostvec–>iov_len = buffer_length;

do {
/* Map the buffer */
retval�=�wsio_map(isc,NULL,0,space_id,virt_addr,

&hostvec,iovecs);

if (retval >= 0) {
/* Mapping was successful point to the
* next I/O virtual address vector.  Note:
* hostvec was modified by map() to point to
* unmapped portion of the buffer.
*/
vec_cnt++;
iovecs++;

}
} while (retval > 0);
/* Check for any errors */
if (retval < 0) {

while (vec_cnt) {
 wsio_unmap(isc, iovec[vec_cnt].iov_base);

vec_cnt––;
}

vec_cnt—;
}
return(vec_cnt);

}

In this case the map() variant wsio_map() is used to map a buffer. When a mapping is successful, the driver can expect that
the virtual host range structure has been modified to point to the unmapped portion of the DMA buffer. The wsio_map()
service just converts the isc parameter into the appropriate token expected by map() to find the control structure for the
correct I/O page directory. The calling convention for map() is:

map(token,map_cb,hints,range_type,host_range,io_range) ,

where token is an opaque value that allows map() to find the bookkeeping structures for the correct I/O page directory. The
map_cb parameter is an optional parameter that allows map() to store some state information across invocations. It is used
to optimize the default I/O virtual address allocation scheme (see below). The hints parameter allows drivers to specify page
attributes to be set in the I/O page directory or to inhibit special handling of unaligned DMA buffers. The host_range contains
the virtual address and length of the buffer to be mapped. As a side effect, the host_range is modified by map() to point to the
unmapped portion of the buffer (or the end of the buffer if the entire range was mapped). The io_range is set up by map() to
indicate the I/O virtual address and the length of the buffer that was just mapped. The range_type is usually the space ID for
the virtual address, but may indicate that the buffer is a physical address.

All I/O virtual addresses allocated via map() must be deallocated via unmap() when they are no longer needed, either because
there was an error or because the DMA completed. The calling convention for unmap() is:

unmap(token,io_range).
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The map() service uses the following algorithm to map memory objects into I/O virtual space:
� Allocate an I/O virtual address for the mapping.

� Initialize the I/O page directory entry with the appropriate page attributes. The page directory entry will be brought
into the I/O translation lookaside buffer when there is a miss.

� Update the caller’s range structures and return the number of bytes left to map.

The first two steps are discussed separately below.

I/O Virtual Address Allocation Policies. As mentioned above, if several DMA streams share a chain ID, there is a risk that
performance will suffer significantly because of thrashing. Two allocation schemes that appeared to eliminate thrashing are:
� Allocate a unique chain ID to every DMA stream.

� Allocate a unique chain ID to every HP-HSC guest.

In the I/O adapter there are a total of 256 I/O translation lookaside buffer entries, and therefore there are 256 chain IDs to
allocate. The first allocation scheme is unrealistic because many more than 256 DMA streams can be active from the
operating system’s point of view. For instance, a single networking card can have over 100 buffers available for inbound data
at a given time, so with only three networking cards the entire I/O TLB would be allocated. Thrashing isn’t really a problem
unless individual transactions are interleaved with the same chain ID, so on the surface it may appear that the second
allocation scheme would do the trick (since most devices interleave different DMA streams at fairly coarse granularity like
512 or 1K bytes). Unfortunately, the second scheme has a problem in that some devices (like SCSI adapters) can have many
large DMA buffers, so all current outstanding DMA streams cannot be mapped into a single chain ID. One of the goals of the
design was to minimize the impact on drivers, and many drivers had been designed with the assumption that there were no
resource allocation problems associated with setting up a DMA buffer. Therefore, it was unacceptable to fail a mapping
request because the driver’s chain ID contained no more free pages. The bookkeeping involved in managing the fine details
of the individual pages and handling overflow cases while guaranteeing that mapping requests would not fail caused us to
seek a solution that would minimize (rather than eliminate) the potential for thrashing, while also minimizing the
bookkeeping and overhead of managing the chain ID resource.

What we finally came up with was two allocation schemes: a default I/O virtual address allocator which is well-suited to
mass storage workloads (disk, tape, etc.) and an alternate allocation scheme for networking-like workloads. It was observed
early on that there are some basic differences in how some devices behave with regard to DMA buffer management.
Networking drivers tend to have many buffers allocated for inbound DMA, but devices tend to access them sequentially.
Therefore, networking devices fit the model very well for the second allocation scheme listed at the beginning of this
section, except that it is likely that multiple chain IDs will be necessary for each device because of the number of buffers
that must be mapped at a given time. Mass storage devices, however, may have many DMA buffers posted to the device, and
no assumptions can be made about the order in which the buffers will be used. This behavior was dubbed nonsequential. It
would have resulted in excessive overhead in managing the individual pages of a given chain ID if the second scheme listed
at the beginning of this section had been implemented. To satisfy the requirements for both sequential and nonsequential
devices, it was decided to manage virtual chain IDs called ranges instead of chain IDs. This allows the operating system to
manage the resource independent of the physical size of the I/O translation lookaside buffer. Thrashing is minimized by
always allocating free ranges in order, so that thrashing cannot occur unless 256 ranges are already allocated. Therefore,
software has a slightly different view of the I/O virtual address than the hardware, as shown in Fig. 3.
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NR =  Number of Ranges per Chain ID
NP =  Number of Pages per Range (8 in HP-UX 10.0)

Fig. 3. (a) Hardware’s (I/O TLB’s) view of I/O virtual addresses. (b) Software’s view of I/O virtual addresses.

With this definition of an I/O virtual address, software is not restricted to 256 resources, but instead can configure the
number of resources by adjusting the number of ranges per chain ID. For the HP-UX 10.0 implementation, there are eight
pages per range so that up to 32K bytes can be mapped with a single range. The main allocator keeps a bitmap of all ranges,
but does not manage individual pages.

A mass storage driver will have one of these ranges allocated whenever it maps a 32K-byte or smaller buffer (assuming the
buffer is aligned on a page). For large buffers (�32K bytes), several ranges will be allocated. When the DMA transfer is
complete, the driver unmaps the buffer and the associated ranges are returned to the pool of free resources.
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All drivers use the default allocator unless they notify the system that an alternate allocator is needed. A driver service
called set_attributes allows the driver to specify that it controls a sequential device and therefore should use a different
allocation scheme. In the sequential allocation scheme used by networking drivers, the driver is given permanent ownership
of ranges and the individual pages are managed (similar to the second scheme above). When a networking driver attempts
to map a page and the ranges it owns are all in use, the services use the default allocation scheme to gain ownership of
another range. Unlike the default scheme, these ranges are never returned to the free pool. When a driver unmaps the DMA
buffer, the pages are marked as available resources only for that driver.

When unmap() is called to unmap a DMA buffer, the appropriate allocation scheme is invoked to release the resource. If the
buffer was allocated via the default allocation scheme then unmap() purges the I/O TLB entry using the I/O adapter’s direct
write command to invalidate the entry. The range is then marked as available. If the sequential allocation scheme is used
then the I/O TLB is purged using the I/O adapter’s purge TLB command each time unmap() is called.
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Fig. 4. An I/O page directory entry.

I/O Page Directory Entry Initialization. Once map() has allocated the appropriate I/O virtual address as described above, it will
initialize the corresponding entry in the I/O page directory. Fig. 4 shows the format of an I/O page directory entry. To fill in
the page directory entry, map() needs to know the physical address, the virtual index in the processor cache, whether the
driver will allow the device to prefetch, and the page type attributes. The physical address and virtual index are both
obtained from the range_type and host_range parameters by using the LPA and LCI instructions, respectively. The LCI (load
coherence index) instruction was defined specifically for coherent I/O services to determine the virtual index of a memory
object. The page type attributes are passed to map() via the hints parameter. Hints that the driver can specify are:
� IO_SAFE. Causes the safe page attribute to be set.

� IO_LOCK. Causes the lock (atomic) page attribute to be set.

� IO_NO_SEQ. Causes the prefetch enable page attribute to be cleared.

Refer to the section “Attribute Bits” in this article for details of how the I/O adapter behaves for each of these driver hints.
Once the I/O page directory has been initialized, the buffer can be used for DMA.

Other hints are:
� IO_IGN_ALIGNMENT. Normally the safe bit will be set automatically by map() for buffers that are not cache line

aligned or that are smaller than a cache line. This flag forces map() to ignore cache line alignment.

� IO_CONTIGUOUS. This flag tells map() that the whole buffer must be mapped in a single call. If map() cannot map
the buffer contiguously then an error is returned (this hint implies IO_IGN_ALIGNMENT).

Driver Impact. The finite size of the I/O page directory used for address translations posed some interesting challenges for
drivers.

Drivers must now release DMA resources upon DMA completion. This requires more state information than drivers had
previously kept. Additionally, some drivers had previously set up many (thousands) of memory objects, which I/O adapters
need to access. Mapping each of these objects into the I/O page directory individually could easily consume thousands of
entries. Finally, the default I/O page directory allocation policies would allocate several entries to a driver at a time, even if
the driver only requires a single translation.

In the case where drivers map hundreds or thousands of small objects, the solution requires the driver code to be modified
to allocate and map large regions of memory and then break it down into smaller objects. For example, if a driver
individually allocates and maps 128 32-byte objects, this would require at least 128 I/O page directory entries. However, if
the driver allocates one page (4096 bytes) of data, maps the whole page, and then breaks it down into 128 32-byte objects,
only one I/O page directory entry is required.

Another solution is to map only objects for transactions that are soon to be started. Some drivers have statically allocated
and mapped many structures, consuming large numbers of I/O page directory entries, even though only a few DMA
transactions were active at a time. Dynamically mapping and unmapping objects on the fly requires extra CPU bandwidth
and driver state information, but can substantially reduce I/O page directory utilization.
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Networking-Specific Applications
The benefits of the selected hardware I/O cache coherence scheme become evident when examining networking
applications.

High-speed data communication links place increased demands on system resources, including CPU, bus, and memory,
which must carry and process the data. Processing the data that these links carry and the applications for which they will be
used requires that resource utilization, measured both on a per-byte and on a per-packet basis, be reduced. Additionally, the
end-to-end latency (the time it takes a message sent by an application on one system to be received by an application on
another system) must be reduced from hundreds of microseconds to tens of microseconds.

Cache coherent I/O, scatter-gather I/O, and copy-on-write I/O all offer reduced resource consumption or reduced latency or
both. They do this by reducing data movement and processor stalls and by simplifying both the hardware and software
necessary to manage complex DMA operations.

Cache coherent I/O reduces the processor, bus, and memory bandwidth required for each unit of data by eliminating the
need for the processors to manage the cache and by reducing the number of times data must cross the memory bus. The
processor cycles saved also help to reduce per-packet latency.

The I/O adapter’s address translation facility can be used to implement scatter-gather I/O for I/O devices that cannot
efficiently manage physically noncontiguous buffers. Previously, drivers needed to allocate large, physically contiguous
blocks of RAM for such devices. For outbound I/O, the driver would copy the outbound data into such a buffer. The mapping
facility allows the driver to set up virtually contiguous mappings for physically scattered, page-sized buffers. The I/O
device’s view of the buffer is then contiguous. This is done by allocating the largest range that the I/O mapping services
allow (32K bytes, currently), then using the remap() facility to set up a translation for each physical page in a DMA buffer.
Using this facility reduces the processing and bus bandwidth necessary, and the associated latencies, for moving
noncontiguous data. Requiring only a single address/length pair, this facility can also be used to reduce the processing
necessary to set up DMAs for, and the latencies imposed by, existing scatter-gather I/O mechanisms that require an
address/length pair for each physical page.

Cache coherent I/O can be used to achieve true copy-on-write functionality. Previously, even for copy-on-write data, the data
had to be flushed from the data cache to physical memory, where the I/O device could access the data. This flush is
essentially a copy. Cache coherent I/O, by allowing the I/O device to access data directly from the CPU data caches,
eliminates processing time and latency imposed by this extra copy. The hardware can now support taking data straight from
a user’s data buffer to the I/O device.

To take advantage of the optimal page attributes where possible (e.g., IO_FAST for inbound DMA buffers) while ensuring
correct behavior for devices that require suboptimal memory accesses such as I/O semaphore or locked (atomic) memory
transactions, the mapping facility can be used to alias multiple I/O virtual addresses to the same physical addresses. Some
software DMA programming models place DMA control information immediately adjacent to the DMA buffer. Frequently,
this control information must be accessed by the I/O device using either read-modify-write or locking behavior. By mapping
the same page twice, once as IO_SAFE and again as IO_FAST, and providing the I/O device with both I/O virtual addresses, the
device can access memory using optimal IO_FAST DMA for bulk data transfer and IO_SAFE DMA for updating the control
structures.

Finally, through careful programming, it is possible to take advantage of IO_FAST coherent I/O, and to allow the driver to
maintain coherence for the occasional noncoherent update. For example, it is possible for the driver to flush a data
structure explicitly from its cache, which will later be partially updated through a write-purge transaction from the adapter.
This has the advantage of allowing the adapter to use its optimum form of DMA, while allowing the driver to determine
when coherency must be explicitly maintained.

Performance Results
To collect performance results, the SPEC† SFS†† (LADDIS) 1.1 benchmark was run on the following configuration:
� 4-way HP 9000 Model K410

� 1G-byte RAM

� 4 FW-SCSI interfaces

� 56 file systems

� 4 FDDI networks

� HP-UX 10.01 operating system

� 132 NFS daemons

� 8 NFS clients

� 15 load-generating processes per client.

† SPEC stands for Systems Performance Evaluation Cooperative, an industry-standard benchmarking consortium.

†† The SPEC SFS benchmark measures a system’s distributed file system (NFS) performance.
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The noncoherent system achieved 4255 NFS operations per second with an average response time of 36.1 ms/operation. The
coherent system achieved 4651 NFS operations per second with an average response time of 32.4 ms/operation.

The noncoherent system was limited by the response time. It’s likely that with some fine-tuning the noncoherent system
could achieve slightly more throughput.

To compare the machine behavior with and without coherent I/O, CPU and I/O adapter measurements were taken during
several SFS runs in the configuration described above. The requested SFS load was 4000 NFS operations per second. This
load level was chosen to load the system without hitting any known bottlenecks.

Comparing the number of instructions executed per NFS operation, the coherent system showed a 4% increase over the
noncoherent system, increasing to 40,100 instructions

from 38,500. This increase was because of the overhead of the mapping calls. If we assume an average of 11 map/unmap pairs
per NFS operation, then each pair costs about 145 instructions more than the alternative broadcast flush/purge data cache
calls.

The degradation in path length was offset by a 17% improvement in CPI (cycles per instruction). CPI was measured at 2.01
on the coherent system and 2.42 on the noncoherent system.

The overall result was a 13% improvement in CPU instruction issue cycles per NFS operation. The coherent system used
80,700 CPU cycles per operation, while the noncoherent system needed 93,300 cycles.

To determine the efficiency of the software algorithms that manage the I/O TLB and to evaluate the sizing of the TLB, the
number of I/O TLB misses was measured during these SFS runs. Under an SFS load of 4000 NFS operations per second, the
disk drives missed 1.30 times per NFS operation, or 0.64% of all accesses.
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A 1.0625-Gbit/s Fibre Channel Chipset

with Laser Driver

This chipset implements the Fibre Channel FC-0 physical layer
specification at 1.0625 Gbits/s. The transmitter features 20:1 data
multiplexing with a comma character generator and a clock
synthesis phase-locked loop, and includes a laser driver and a
fault monitor for safety. The receiver provides the functions of
clock recovery, 1:20 data demultiplexing, comma character
detection, and word alignment, and includes redundant
loss-of-signal alarms for eye safety. A single-chip version with both
transmitter and receiver integrated is designed for disk drive
applications using the Fibre Channel arbitrated loop protocol.

by Justin S. Chang, Richard Dugan, Benny W.H. Lai, and Margaret M. Nakamoto

The information revolution has pushed the datacomm world to gigabit rates. Hewlett-Packard’s G-Link chipset1

(HDMP-1000) helped paved the way for low-cost gigabit technology. Since that debut, important standards such as Fibre
Channel (FC) have incorporated gigabit rates in their documents. HP now offers a low-cost solution for Fibre Channel
applications with the HDMP-1512 and HDMP-1514 transmitter and receiver chips, respectively.

The chipset implements the physical layer interface as defined in Fibre Channel specification FC-0.2 Both the transmitter
and the receiver use a “bang-bang” phase-locked loop technique similar to the G-Link chipset. Since the standard allows the
use of either copper or fibre media, the transmitter has an integrated CD (compact disk) laser driver in addition to two
50-ohm cable drivers. Out of concern for eye safety, the standard requires the chipset to include certain monitors and
controls to interface to an open fibre control (OFC) chip, so the chipset includes a laser fault monitor and loss-of-signal
alarms.

The chipset’s speed is selectable: either 1062.5 Mbits/s or 531.25 Mbits/s. To conserve power, the receiver chip implements a
demultiplexing scheme that allows the use of lower-speed and lower-power cells to recover the parallel data. A special
selectable “ping-pong” mode for the parallel TTL bus helps reduce switching noise on the supply lines. The upper and lower
10 bits are shifted by half a clock cycle relative to each other when ping-pong mode is active.

Both chips are implemented using a proprietary HP device array based on the HP25 bipolar process, a 25-GHz fT process.
The array concept not only allowed quick design cycle times but also enabled the fabrication of a single-chip transceiver
that integrates both the transmitter and the receiver. The 10-bit transceiver design heavily leveraged the cells of the chipset.
The transceiver is designed for disk drive applications using the Fibre Channel arbitrated loop (FC-AL) protocol.

System Configuration
The chipset is designed for use in a Fibre Channel optical module. Fig. 1a shows a typical system configuration. There are
three ICs: the transmitter, the receiver, and the OFC (open fiber control) chip. The transmitter and receiver chips use a
system frame clock (53.125 MHz) for transmission and to assist in meeting the data lock time. The transmitter uses an
external p-n-p power device to handle the potentially large laser currents—as large as 130 mA. The OFC controller monitors
link status lines from the transmitter and receiver chips to handle the safety protocol and the link startup sequence as
described in the standard. A photograph of the assembled module is shown in Fig. 1b.

Transmitter Chip

The transmitter block diagram is shown in Fig. 2. It consists of three major blocks—the laser driver, the multiplexer, and the
clock generator and phase-locked loop—plus a host of I/O and other supporting circuitry.
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Fig. 1. (a) Block diagram of the HP HGLM-1063 module. (b) HP HGLM-1063 module.
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Fig. 2. HDMP-1512 transmitter chip block diagram.

Laser Driver
The three distinct laser driver sections are the dc bias circuit, the ac driver, and the safety circuit, as shown in Fig. 3. The
laser driver is designed for anode bias configurations and operating rates up to 1.0625 Gbits/s. The dc bias circuit can handle
optical devices that require up to 130 mA of bias current and have Vth as large as 2.3V. For 780-nm CD lasers operating at
–3-dBm optical power out, the typical dc bias current is 40 mA and the monitor diode current is 400 µA. The ac driver
provides a minimum modulation of 25 mA peak-to-peak into the laser.

The dc bias circuit and the ac driver are decoupled for ease of adjustment. The decoupled scheme allows adjustment of
either the average power or the modulation depth without affecting the other. Both of these settings are determined by
resistive elements. The safety circuit monitors fault conditions to ensure that the laser optical output power will not be at
unsafe levels.

DC Bias Circuit. Referring to Fig. 3, the dc bias of the laser is controlled by the operational amplifier feedback loop. The op
amp’s positive input is internally set to 1.85V. It is obtained through a voltage divider from the 2.42V bandgap reference node
(output of the bandgap reference circuit3), LZBGTP. The negative input, LZMDF, is connected to a bias network controlled by
the laser monitor diode. More current to the laser creates a larger monitor diode current, lowering the voltage on LZMDF.
This results in a higher output voltage on LZDC. This decreases the Vbe of transistor P1, thereby lowering the laser bias
current until the monitor diode node LZMDF and the internal reference node are again equal. The monitor diode has a slow
optical response (rise and fall times = 10 ns); thus, it acts as a low-pass filter to improve stability.
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Fig. 3. Laser transmitter block diagram.

The gain through the op amp and the p-n-p transistor affects the accuracy of the loop in holding to the original setting. The
op amp has a typical gain of 20 dB. Depending on the external components used, the total voltage loop gain is nominally 40
dB. This is adequate to hold the bias. Current gain is supplied by the external p-n-p transistor.

AC Driver Circuit. The ac driver uses a differential collector-driven output configuration. The nominal output impedance is 50
ohms. The drive current is controlled by the external potentiometer, Pot 2. A temperature and supply compensated
constant-current bandgap reference is used to bias the current source. The external resistor should have a low temperature
coefficient to minimize its effect on the ac drive as the temperature changes. The supply to the final output stage is made
available to the user for filtering out supply noise.

The equivalent ac impedance for the laser diode is on the order of 10 ohms. To assist the ac driver in driving current to the
laser and not to the supply path, an 8-ohm resistor and an RF filter are used to increase the impedance looking into the dc
bias network.

Fig. 4 shows the optical eye pattern from a 780-nm CD laser. The typical 20-to-80% rise or fall time into a 25-ohm load is 250
ps. The driver can also be adjusted to operate with 1300-nm single-mode lasers.

Laser Monitor and Safety Control. The built-in safety circuit uses the monitor diode current to check for high optical output
power. The circuit monitors the laser output for deviations larger than ±10% from the nominal power setting. If the optical
power is out of this window, the monitor starts the laser turn-off process. If the fault state continues for a time set by the
error timing capacitor LZTC, the laser will be turned off. The circuit can then only be reset by cycling the laser-on pin, LZON.

The laser safety circuit can be activated in different ways. In all cases, the laser is turned off by pulling a large current at the
LZMDF pin, causing the window detector to sense a fault. This causes the LZDC output to go high and turn off transistor P1.
At the same time, the ac driver is held in a static state. This is necessary because the ac circuit has enough output drive to
pulse the laser without the dc bias current.
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Fig. 4. 780-nm CD laser eye pattern (–3 dBm).

The window detector monitors the voltage on LZMDF. The high and low levels are set at 1.85V ±10%. This translates directly
to monitoring whether the optical output power has deviated more than ±10% from the nominal setting. If LZMDF goes out of
this range, the charge on the LZTC capacitor will be discharged by a few hundred microamperes of current. If the fault
continues and the voltage lowers to the fault value (1.3V), then the error detector cell will output a TTL high level on the LZF
pin and turn off the dc bias. The error time is set by the capacitance between LZTC and ground. This will be a few
milliseconds for a 0.1-µF capacitor.

There is also a bandgap monitor cell which checks for gross faults with the 2.42V bandgap. Because this bandgap is used in
setting the window range, a change will not necessarily cause the window detector to sense a fault. The bandgap monitor
uses the Vcc voltage as a reference to sense when the bandgap is higher than 3.0V or lower than 2.0V. The 3.0V translates
into a maximum 2× increase in optical output power before the laser is turned off.

Once a fault has been detected, this condition is latched until the laser driver is reset using the LZON pin. A TTL high on
LZON will charge the LZTC capacitor while holding the laser output off. When LZON is set low again, all laser circuitry is
enabled.

Transmitter Multiplexer
The block diagram of the transmitter multiplexer is shown in Fig. 5. In the normal 1062.5-Mbit/s mode, shift registers are
loaded with the 20-bit-wide parallel data and then shifted to form the high-speed output. To conserve power, an interlacing
method is used to allow the shift registers to operate at half speed. These registers are separated into two banks of ten and
are loaded with the proper bit order. The outputs of the two banks are then combined with one high-speed D flip-flop. In the
531.25-Mbit/s mode, only 10 bits are loaded into a single bank and the second bank is ignored.

The data byte 1 inputs are inserted with a set of latches, allowing this data to be shifted by one-half bit relative to data byte
0. This configuration allows for the ping-pong mode of operation, in which the two input bytes are time-shifted by one-half
bit to minimize possible switching noise.

An extra feature of the transmitter is “comma” character generation. When this mode is asserted, the K28.5 character
(0011111010) is loaded into the shift registers. This is particularly helpful in the evaluation phase of the chipset for
byte-aligning the receiver without the higher-order FC-1 and FC-2 chips.

Transmitter Clock Generator
The logic block diagram of the transmitter clock generator is shown in Fig. 6. It takes the input from the VCO at 1062.5 MHz
and derives the necessary clocks for the multiplexer. The clock rate reduction involves serial divisions of 2, 2, and 5 for the
1062.5-Mbit/s (20-bit) mode and 2, 5, and 2 for the 531.25-Mbit/s (10-bit) mode. The divide-by-5 function is last for the
1062.5-Mbit/s mode, allowing it to operate at the slower speed to reduce power. All of the clocks are retimed by the
high-speed clock to ensure proper clock alignment.
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Transmitter Phase-Locked Loop
The phase-locked loop is a bang-bang type and is able to lock onto the reference clock at 53.125 MHz. It consists of a
modified sequential detector, a charge pump integrator, a VCO, and the clock generator. The detector, integrator, and VCO
were leveraged from the G-Link chipset.1 The nominal bang-bang time of the VCO is 1 ps per cycle.

Receiver Chip

The block diagram of the receiver chip is shown in Fig. 7. It consists of the demultiplexer, the phase-locked loop and clock
generator, redundant loss-of-signal (LOS) detectors, and other I/O and supporting circuits such as the power-on supervisor.

Receiver Demultiplexer
The logic diagram of the demultiplexer is shown in Fig. 8. In addition to providing the serial-to-parallel conversion of the
input bit stream, it also detects the comma character (0011111xxx) for proper frame alignment, as required by the Fibre
Channel standard. Once the comma character is detected, a reset signal is sent to the clock generator for synchronization.
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To minimize power consumption, an interlacing method of demultiplexing is used in the receiver chip. The high-speed data
stream is first deciphered into two streams at half the rate, and these are loaded into two banks of shift registers. The
parallel data in the shift registers is then clocked into the output flip-flops at the frame rate. An extra bank of latches is
added for data byte 0, which enables the ping-pong mode of operation.
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Fig. 8. Receiver demultiplexer.

Since there are two possible ways in which the deciphering can occur, that is, bit one could be in either bank one or bank
two, proper decoding is needed to reassemble the final byte pattern. This is accomplished by the selector block preceding
the output flip-flops, and is controlled by how the comma character is detected within the two banks. When either case is
detected, the reset indicator to the clock generator is set high. Since this signal is a critical path in the overall operation of
the chip, it is retimed to give the clock generator more margin to reset. As a result, the data is delayed by an additional cycle
before being loaded out. This delay is compensated by extending the shift register count by one.

The data is further delayed before unloading by the antisliver feature (discussed next) in the clock generator where the
clocks are extended. The number of registers is increased in the same manner to compensate.
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Receiver Clock Generator and Antisliver Circuit
The logic diagram of the clock generator is shown in Fig. 9. In a manner similar to its transmitter counterpart, it takes the
VCO output and generates all of the necessary clocks required by the chip. It includes an antisliver circuit, which ensures
that the frame clock presented to the user has no “slivers,” as explained below.

The core of the generator is a divide-by-5-or-10 counter. To minimize power, the frame clock goes through a 2,10 scaling for
the 1062.5-Mbit/s mode, and a 2,2,5 scaling for the 531.25-Mbit/s mode. However, RBCLK requires a clock at the frame rate
that must have a 50% duty cycle. Since this is not possible with the natural states within the divide-by-five counter (2/5 or
3/5), the pulse of the 2/5 count is extended by one cycle of the high-speed clock, yielding the required 50% duty cycle.

Antisliver
Circuit

Divide
by 5/10

RBC0

RBC1

FFRM

F2

F1

SPDSEL

RESET

FVCO 0

1

�2

�2

TTL

TTL
Counter

States

Fig. 9. Receiver clock generator.

When the reset signal is applied, the counter is forced to a predetermined state. Because the previous state of the counter is
random, the frame clock may contain short pulses or slivers, which could cause problems for the user. The antisliver circuit
continuously monitors the counter for this condition and masks these bursts as they occur. The logic accommodates both
the 531.25-Mbit/s mode and the 1062.5-Mbit/s mode.

Receiver Phase-Locked Loop
The phase-locked loop of the receiver uses the same basic configuration as the transmitter phase-locked loop, with the
addition of a phase detector for NRZ data. The design of this detector is identical to the detector used in another proprietary
HP IC,4 with the exception that the falling edges are ignored. This is to eliminate any effect of the excess jitter of the falling
edge, which arises from the self-pulsing CD lasers. The lock-to-reference (–LCKREF) input enables the user to activate the
frequency detector for initial frequency acquisition.

Receiver Loss-of-Signal (LOS) Detector
With major concerns for eye safety, the Fibre Channel standard calls for redundant LOS detectors within the optical module
to ensure a robust system. Two LOS detectors are incorporated in the receiver IC, and are provided as outputs to the OFC
chip. Since the alarm outputs are heavily filtered within the OFC chip, hysteresis is not necessary in the LOS design.

The LOS detectors are based on a concept of envelope detection without the use of a capacitor. One detector is configured
to detect the loss of amplitude resulting from a lack of received signal. The second detects the condition in which the
differential inputs are static, indicating a fault in the optical receiver. Both LOS detectors are further digitally filtered, with
one driven by the reference clock and the other by an internal clock. This further ensures the reliability of the fault
detection system for maximum safety. The triggered threshold is preset to 25 mV and can be adjusted with an external
resistor, as shown in Fig. 10.

The receiver front-end sensitivity is well below the nominal LOS threshold of 25 mV. Fig. 11 shows the bit error rate (BER)
as a function of the input differential signal. The BER is basically zero for signals 6 mV and above. Because it is impractical
to perform actual tests for BER as low as 10–20 (�3000 years), one can use the plot to extrapolate the BER for the incoming
signal amplitude. Tests have been run for weeks without a single error.

Transceiver Chip

One major target application for Fibre Channel is disk arrays. This application demands a much lower-power and lower-cost
solution than the chipset offers. The new HP HDMP-1526 transceiver is a 10-bit, 1062.5-Mbaud transceiver designed for this
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Fibre Channel arbitrated loop (FC-AL) market. It is a descendant of the HDMP-1512/HDMP-1514 20-bit, 1062.5/531.25-Mbaud
transmitter/receiver chipset. The Fibre Channel chipset has many functions not needed in the FC-AL transceiver chip, such
as optical interface blocks. Fig. 12 shows the block diagram of the transceiver. The reduction in functions and the change to
a 10-bit bus allowed the integration of both transmitter and receiver functions onto a single die, using a proprietary HP
device array. The transceiver uses a 10-bit parallel interface running at 106.25 Mbaud instead of a 20-bit parallel interface
running at 53.125 Mbaud.

Deletions on the transmitter side include the ac laser driver and its supporting dc bias circuitry and the comma generator
function. Deletions on the receiver side include the power-on/reset circuitry, the loss-of-signal circuitry, and the cable
equalizer function. Deleted functions common to both the transmitter and receiver include the speed selector and the
ping-pong selector. The loopback ports were also deleted because an internal connection is possible with a single-chip
design. This leaves just one high-speed output port and one-high speed input port. Other timing changes were implemented
to fit specific customer needs.
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Fig. 13. Transceiver die (proprietary HP array).
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In the single-chip design, select inputs and clocks are shared between the transmitter and receiver. This lowers the power
requirements, reduces the number of pins, and makes possible a smaller chip size if a custom layout is done at a later date.
The transceiver, with its 1.8-watt total power dissipation (compared to 3 watts for the chipset), is packaged in a single 64-pin
14-by-14-mm quad flat pack.Isolating the two independent phase-locked loops within a 3.54-mm-by-3.54-mm area presented
the biggest challenge during the layout of the chip. The transmitter and receiver phase-locked loops are placed at opposite
corners to minimize cross talk. Various portions of the chip are isolated by using separate power supplies and bandgap
references. Although much of the chip and block-level layout was redone starting from the 20-bit chipset, the proprietary HP
array enabled us to complete the transceiver design very quickly. Fig. 13 shows a photograph of the FC-AL 10-bit transceiver
die implemented on the array.

Summary
A two-chip gigabit chipset conforming to the FC-0 specification has been fabricated. The speed of the chipset is
user-selectable at either 1062.5 Mbaud or 531.25 Mbaud. The transmitter integrates a high-speed laser driver capable of
driving either 780-nm CD lasers or 1300-nm lasers. The receiver has redundant loss-of-signal detectors for eye safety. The
chipset runs on a single +5Vdc supply and has TTL data and control interfaces. Implementation using a proprietary HP
device array allowed a quick design cycle to produce a 10-bit single-chip transceiver for the FC-AL market.

Acknowledgments
The authors would like to thank the following people for their invaluable help and support in the development of this
chipset: Han-ling Beh, Virginia Brown, Chee Chow, Mike Dix, Kamal Elahi, Chris Ocampo, Pat Petruno, Bruce Poole, and
Ron Whitetree. Many thanks to David Siljenberg at IBM for his Fibre Channel expertise. We would also like to thank the
people from the Integrated Circuit Business Division’s HP25 process and support teams for their great models, tools, and
fabrication.

References
1. C.S. Yen, R. Walker, P. Petruno, C. Stout, B. Lai, and W. McFarland, “G-Link: A Chipset for Gigabit-Rate Data Communication,”

Hewlett-Packard Journal, Vol. 43, no. 3, October 1992, pp. 103-116.
2. ANSI X3.230 Fibre Channel FC-0 Standard.
3. P.R. Gray and R.G. Meyer, Analysis and Design of Analog Integrated Circuits, Third Edition, Wiley, 1992.
4. B. Lai and R. Walker, “A Monolithic 622-Mb/s Clock Extraction Data Retiming Circuit,” Proceedings of the ISSCC, 1991, pp.

144-145.

http://www.hp.com/hpj/feb96/fb96a8.html
http://www.hp.com/hpj/feb96/toc-02-96.html
http://www.hp.com/hpj/journal.html


February 1996 Hewlett-Packard Journal       1

Applying the Code Inspection Process to

Hardware Descriptions

The code inspection process from the software world has been
applied to Verilog HDL (hardware description language) code. This
paper explains the code inspection process and the roles and
responsibilities of the participants. It explores the special
challenges of inspecting HDL, the types of findings made, and the
lessons learned from using the process for a year.

by Joseph J. Gilray

The primary goal of the code inspection process is to maximize the quality of the code produced by an organization. A
secondary benefit of the process is that it allows members of the development teams to share best practices. The code
inspection process revolves around a formal inspection meeting. The process calls for the development of operational
definitions, planning, a technical overview, preparation for the meeting, rework after the meeting, and follow-up. Fig. 1
illustrates the relationships between the steps. The steps themselves are described in the sections that follow. As shown in
Fig. 1, the operational definitions affect all stages in the inspection process. Between some of the stages in the inspection
process decisions whether or not to continue need to be made. These decisions are indicated on the figure by “Proceed?”.

Planning

Technical
Overview

Preparation

Inspection
Meeting

Rework

Follow Up

Operational
Definitions

Proceed?

Proceed?

Proceed?

Fig. 1.  the code inspection process.

The code inspection process as implemented at the HP Integrated Circuits Business Division in Corvallis, Oregon (ICBD
Corvallis) contains several roles: process manager, moderator, author, paraphraser (reader), scribe, and inspector. There is
only one permanent role, that of inspection process manager. The remaining roles are filled for each inspection. The
subsections below call out the general responsibilities and duties of each role. Specific tasks are called out in the
description of each process stage later in the paper. HP’s software quality engineering department has published checklists
for each role that can be very useful when getting started with the process.
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Process Manager. Ensures that best practices are spread among the designers of the organization or project. Tasks include
developing and publishing operational definitions (described in the next section), disseminating best practices and common
defects, and acting as an advocate for the HDL code inspection process. This last item cannot be overemphasized. The
process manager must ensure that priority is given to inspections even in the face of mounting schedule pressure on the
design team. It is also important that the process manager make clear that the specific results (defects found) of the
inspections will not be made available to management or any other party. The inspection process can only succeed in an
environment where the members of the design team feel secure in opening their code to review. So that management sees
the value of the process, the process manager should keep general results of the overall inspection process such as the
number and type of defects found, the time spent, lines of code inspected, and most important, best practices shared. These
process statistics are very useful, but the grass roots support that develops for the inspection process will be the real
indicator of its value.

Moderator. Manages each step of the process for a given inspection. Ensures that participants are prepared and that
requirements are met.

Author. Prepares the HDL for inspection. Creates supplementary documentation (such as block diagrams) as necessary to
explain the purpose of the code. Open to suggestions and defects. Reworks the HDL as necessary.

Paraphraser. Familiar with guidelines and best practices. Able to explain the HDL code during the inspection meeting.

Scribe. Logs defects and enhancements found during the meeting.

Inspector. Reads and understands the HDL. Notes any defects, comments, or enhancements before the meeting. Every
person involved in the meeting participates as an inspector.

Development of Operational Definitions
An operational definition is simply a standard. Before an inspection takes place a core set of operational definitions should
be in place and recognized by the design team. They are developed from conventions, guidelines, industry standards, and
recognized best practices. For HDL code inspections at ICBD Corvallis, we adopted the simplest set of operational
definitions that we felt were adequate to guide the process:
� Coding style standards. Although no explicit HDL coding standard was selected, we developed a standard HDL

module header (Fig. 2).

/ / File name 
/ / Module name(s) 
/ / Author name(s) 
/ / Revision log 
/ / File description (why are these modules grouped together) 
/ / . . . 
/ / Module name (for each module) 
/ / Module description 
/ / Signal descriptions (these include all HDL signals, including wires) 
/ / For each signal specify: 
/ / – type 
/ / – purpose 
/ / – values/states description 
/ / – invariants (such as tristate nodes that are always driven) 
/ / – special loading conditions 
/ / – value at reset 
/ / – overflow/wraparound conditions (e.g. for counters)

Fig. 2. Standard Verilog HDL module header adopted for code inspections.

� Definition of a defect. We defined a defect as any deviation from the module specification as presented in the tech-
nical overview meeting (see below) and the HDL module header.

� Defect severity codes. We applied a simple defect severity scale based on HP’s internal Defect Tracking System
(DTS), as shown in Table I.
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Table I
Defect Severities

Name ID Description

Critical 9 Defect will lead to unworkable or grossly inefficient design.

Serious 7 Defect will lead to a large deviation from the specification or to a design that is unreli-
able or very inefficient.

Major 5 Defect will lead to a deviation from 
the specification or to a design that is inefficient.

Minor 3 Defect will lead to a minor deviation from the specification or to a design that is
slightly inefficient. Also used when code is in serious need of comments to be main-
tainable.

Wibni 1 “Wouldn’t it be nice if...?” This ID is used for enhancement requests, which are typi-
cally changes in coding style or requests for clarifying comments in the code.

� Defect logging standards. We started out using inspection data summary sheets provided by HP’s software quality
engineering department, but after a few inspections we found that an open-format inspection process and defect
logs worked better.

� Target-based best practices. ICBD Corvallis developed a set of Verilog HDL coding guidelines to ensure reliable,
high-quality synthesis results. These guidelines include sections on clocking strategies, block structure, latches and
registers, state machines, design for test, ensuring consistent behavioral and structural simulation results, and is-
sues specific to Synopsys synthesis tools, which are used extensively by HP. This document provided valuable input
to the HDL code inspection process and itself benefitted from the practices shared during the inspections.

� Inspection entry criteria. The inspection entry criteria were that the HDL had to be functionally correct in behav-
ioral simulation and had to be of small-to-moderate size (100 to 700 noncomment Verilog HDL source statements).

� Inspection exit criterion. We did not develop a formal inspection exit criterion. Instead, the moderator was given
the responsibility of ensuring that rework was satisfactorily completed for each piece of HDL inspected.

Planning
When a designer feels that a piece of HDL code is a good candidate for inspection, the designer asks another designer to act
as moderator. Together they review the HDL to be inspected to ensure that it meets the entry criteria, especially that the
amount of HDL to be inspected is appropriate. In addition, they review any supplementary documentation such as module
specifications or block diagrams and discuss what will need to be presented at the technical overview meeting. The
moderator, with help from the author, assembles the rest of the inspection team: a paraphraser (reader), a scribe, and up to
three additional inspectors. It is the moderator’s responsibility to schedule the technical overview meeting and to ensure
that the inspection team members are prepared to meet their responsibilities. The moderator should treat the meetings and
preparation as a very important requirement for each participant. Every person involved must be prepared—at a code
inspection, no one is just an observer.

Technical Overview
The technical overview meeting should last no more than 90 minutes. Its primary purpose is to allow the author to outline
the module(s) to be inspected and to answer questions. The roles are formally assigned during this meeting and the
moderator should ensure that all participants understand the roles assigned to them. If there are inexperienced inspection
team members, the moderator should take time to explain the operational definitions and to pass out responsibility
checklists for each role. Finally, any supplementary documentation and the HDL code itself are distributed to the team. The
code should be printed with line numbers so that during the inspection meeting all team members can more easily follow
the discussion.

Preparation
Each member of the inspection team should spend from two to four hours reading over the HDL. Team members should
mark possible defects on their copies of the code. Team members should freely discuss the code among themselves but not
in a wider context, to protect the privacy of the author. The team should be given at least a week to look over the HDL.
During this time the moderator should schedule the inspection meeting. Before the meeting the moderator should ensure
that all team members are prepared and can participate in the meeting before allowing the inspection to proceed.

Inspection Meeting
The inspection meeting is the heart of the process. The moderator must reserve a quiet room for a sufficient amount of time.
Typically inspection meetings take from two to three hours. The moderator is also responsible for keeping the meeting on
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track so the code can be completely inspected in the time allowed. To start the meeting the scribe should record the amount
of preparation time required of each participant. The paraphraser should announce the order in which the code will be
inspected. Typically this is top-down or bottom-up. The paraphraser explains each block of code and allows time for each
inspector to discuss possible defects or enhancements to that code.

The goals of the meeting may vary somewhat from organization to organization, but typically the major goals are to find
defects in the code under inspection and to share best practices among the members of the design or coding team. In our
process, we encouraged discussion of any defect or enhancement. Although this does not strictly adhere to the traditional
software inspection process, we felt the benefits (improved coding, simulation, and synthesis practices) justified the time
spent.1

The moderator must ensure that any defect or enhancement is recorded by the scribe and that the inspection team agrees to
the severity assigned to each item. To keep the group on track, the moderator should not allow long discussions of the
severity of any defect. Where no agreement can be reached, the moderator should assign a severity. If the assignment of a
severity code becomes a stumbling block to progress in several meetings, a simpler major/minor severity classification can
be adopted as an operational definition.2 The moderator should keep track of any best practices that come up during the
meeting that are not already part of the operational definitions and note any questions raised about related design processes
and tools.

Rework
After the meeting the scribe gives the defect log to the author (and only to the author). It is the author’s responsibility to
modify the HDL code as appropriate. If the author or the moderator feels that the HDL should be reinspected, another
meeting can be scheduled (this should be very rare, and should proceed with a different set of participants in all roles other
than the author).

Follow-up
After each inspection the moderator should investigate any questions that were brought up about design processes and
tools, such as simulation and synthesis. The results of the investigation along with any new best practices should be
published for the design teams. The moderator and process manager should also review the operational definitions and
update them. Finally, the process manager should update the overall inspection process statistics.

HDL Issues
When inspecting code written in a high-level software language, normally there is a single target compiler and platform. We
found that a major difficulty with inspecting code written in a hardware description language was deciding on a target on
which to focus. HDL is traditionally targeted to both simulation and synthesis (among a growing list of HDL source-level
tools). We started by trying to inspect HDL without thinking in terms of a specific target. In theory, it might be possible to
inspect HDL code as an abstract description. In practice, it was nearly impossible. Both the expected simulation results and
the actual implementation created by the synthesis process were always on the minds of the inspectors (see Fig. 3).
Furthermore, operational definitions such as defect severity are invariably developed and interpreted with reference to a
target.

Register Transfer Language
Hardware Description Language

Results and
Structural

Representation
Results

Differences

Synthesis

• Options
• Configuration
• Constraints

Simulation

• Options

Fig. 3. HDL is targeted to both simulation and synthesis.
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By the time we had done several inspections it was evident that the most common practices being shared in the meetings
were related to register transfer language (RTL) coding for synthesis. Since the synthesis tools are not as mature as either
compilers for high-level languages in the software domain or simulators in the hardware domain, we spent a good deal of
time discussing what structural elements the synthesis tools would create from the RTL-level HDL code given a set of
constraints and synthesis options. This seemed natural given the complexity of the synthesis tools. At times the inspection
meetings focused more on the synthesis tools than on the HDL. When writing HDL for synthesis the types of complexities
involved are more akin to porting a complex piece of software between frameworks than between compilers. Therefore, it
is inevitable that the inspection meetings devote a good deal of time to synthesis. As use of very complex source-level tools
such as behavioral synthesis tools becomes widespread this effect will become more pronounced. In fact, one benefit of the
HDL inspection process is to share information about the tools used during design creation. This happens less frequently in
a traditional software inspection where the compiler is less configurable and better understood. But where the software is
targeted at many platforms, this type of discussion occurs in the software domain as well.

Another difference we found between HDL code inspections and software inspections was that often there were questions
that couldn’t be satisfactorily answered during the inspection, such as “What will the synthesizer produce from the following
code (e.g., mixed addition and subtraction of registers with differing widths)?” It was up to the moderator to follow up with
the author (or another inspector) on questions that couldn’t be answered in the meeting and to write up a response for the
design team and for possible inclusion in the best practices guidelines.

Table II indicates the kinds of topics that came up during the inspections and their approximate frequency.

Table II
HDL Inspection Topics

Frequency Topic

35% HDL coding style, standards, and guidelines (e.g., when to use blocking and nonblocking as-
signments, etc.)

30% Structures produced by synthesis tools (HDL compiler, design compiler, finite state machine
compiler)

10% Differences between simulation results and synthesis results

10% HDL efficiency considerations (e.g., inference of unnecessary latches, use of extra clock
cycles)

10% HDL documentation

5% HDL block structure

As more HDL inspections were performed, the number of experienced inspectors grew and the guidelines for creation of
HDL for synthesis, which had been created by synthesis users in the lab, became widely disseminated and discussed. Again,
one of the primary benefits of the HDL code inspection process is the spread of best practices among the larger group of
designers.

Lessons
As the use of HDL increased in our lab, we noted a need for tools to improve the quality of the HDL produced by the design
teams. The lack of HDL source-level tools such as code complexity analyzers, lint (a syntax checker), and others led us to
choose a less automated approach. Our first effort at improving the quality of HDL was to develop an HDL code inspection
process based on the inspections done for software written in high-level languages.

The process that evolved for inspecting HDL in our lab incorporates elements of both a formal code inspection process and
a structured walkthrough process. Although we gave importance to the technical overview meeting, it wasn’t always held,
especially if inspection team members were offsite. Furthermore, both the rework and the follow-up steps were left to the
moderator and author and checked only informally by the process manager.

Early in the adoption of the process we used a set of responsibility checklists for each role. As time went on we found that
these were not strictly necessary but did engender a feeling of formality. It is important that the participants take the
process seriously to ensure that the time spent on it is not wasted.

Over time we came to realize the importance of the technical overview meeting. If it is impossible for the author to attend the
meeting (we ran into several cases where the author was from another site and unable to attend a technical overview) then
someone else on the inspection team should take the author’s place for the meeting. In cases where we skipped the meeting,
the preparation time for each participant increased dramatically. In one case the inspection required 6 to 10 hours of
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preparation time. Though the code was fairly long at 900 lines of HDL, this was an unreasonable amount of time to expect
from each reviewer and could have been reduced  by half  had there been a one-hour technical overview held.

In our experience, the most significant benefit of the HDL inspection process was to spread HDL, simulation, and synthesis
best practices among the design teams. Not only did the process encourage interaction between various teams within ICBD,
but several design teams in HP entities outside of ICBD brought code to us for inspection. To ensure that this benefit is
realized it is very important that the process manager and the moderators take the time to publish the guidelines that are
developed during each inspection. As designers become proficient at creating HDL and knowledgeable of synthesis and
simulation best practices, and as HDL coding guidelines become well-established in an organization, the need to do
inspections to spread best practices decreases.

We found relatively few major defects in the HDL code that was inspected, probably because the code was all at the RTL
level and simulated and synthesized before inspection. Studies have indicated that the inspection process gives the best
results when applied at a high level of abstraction. I contend that we will find more defects if we apply the process to
module specifications or to behavioral HDL. If the target chosen is complex (as behavioral synthesis tools currently are) the
tendency for the process to focus on the tool instead of the code will also be more pronounced. Even so, applying the
inspection process to higher-level abstractions may be a logical next step. Doolan wrote, “As people become aware of the
tremendous benefits of the inspection process, there is an increasing desire to apply it to other software items, such as user
documentation ... inspection breeds inspection.”2

Summary
Reference 3 describes one ICBD Corvallis project that used the HDL inspection process (however, inspections are not
discussed in reference 3).

The code inspection process can be applied successfully to hardware descriptions if the following conditions are met:
� A simple set of operational definitions is developed for the process.

� Engineers are willing to open their code to inspection and the process is viewed by the design community as bene-
ficial and important.

� Management gives project teams adequate time to perform inspections.

� Best practices and guidelines are recorded and updated.

For project teams just starting to use hardware description languages in the design process, code inspections can play a
vital role in ensuring high-quality HDL. At ICBD Corvallis, we found that the inspection process works extremely efficiently
in spreading best practices for HDL coding, simulation, and synthesis. 
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Overview of Code-Domain Power, Timing,

and Phase Measurements

Telecommunications Industry Association standards specify
various measurements designed to ensure the compatibility of
North American CDMA (code division multiple access) cellular
transmitters and receivers. This paper is a tutorial overview of the
operation of the measurement algorithms in the HP 83203B CDMA
cellular adapter, which is designed to make the base station
transmitter measurements specified in the standards.

by Raymond A. Birgenheier

In 1994, the Telecommunications Industry Association (TIA) released the IS-95 and IS-97 standards developed by the TIA
TR-45.5 subcommittee. These standards ensure the mobile-station/base-station compatibility of a dual-mode wideband
spread spectrum system—the North American CDMA (code division multiple access) cellular telephone system.1 CDMA is a
class of modulation that uses specialized codes to provide multiple communication channels in a designated segment of the
electromagnetic spectrum.  The TIA IS-95/97 standards specify various measurements that must be made on CDMA base
station and mobile station transmitters and receivers to ensure their compatibility. The HP 83203B CDMA cellular adapter
for the HP 8921A Option 600 cell site test system is designed to make the base station transmitter measurements specified in
the standards.  The HP 83203B algorithms provide accurate measurements of code-domain power, time, frequency, and
phase.  This paper is a tutorial overview of the operation of the measurement algorithms in the HP 83203B.

The HP 83203B measurement algorithms provide a characterization of the code-domain channels of a CDMA base station
transmitter.  One of the measurements, called code-domain power, provides the distribution of power in the code channels.
This measurement can be used to verify that the various channels are at expected power levels and to determine when one
code channel is leaking energy into the other code channels. The crosscoupling of code channels can occur for many
reasons. One reason is a time misalignment of the channels, which would negate the orthogonal relationship among code
channels.  Another reason may be the impairment of the signals caused by nonideal or malfunctioning components in the
transmitter. To determine the quality of the transmitter signal, a waveform quality factor, ρ, is measured. It is the amount of
transmitter signal energy that correlates with an ideal reference signal when only the pilot channel is transmitted.

Another set of measurements, called code-domain timing and code-domain phase, determine how well-aligned the code
channels are in time and in phase. The parameters measured are time offsets and phase offsets of active code channels
relative to the pilot channel (code channel 0).

To make these measurements to the precision specified in the IS-97 standard, it is necessary to establish the time origin and
the carrier frequency of the signal to be measured.  The HP 83203B provides these measurements.  Another measurement
that may be useful when diagnosing the causes of poor transmitter signal quality is the carrier feedthrough in the transmitter
signal.  The effect of carrier feedthrough will also be seen when measuring code-domain power.

This paper presents (1) the general concepts of CDMA signals and measurements, (2) the signal flow of the measurement
algorithms, (3) the specifications from the IS-97 standard and performance predictions for the measurement algorithms
based on mathematical modeling and simulations, and (4) some typical results of measurements made with the HP 83203B.

CDMA Operation
The channel structure for a CDMA base station transmitter is shown in Fig. 1. There are 64 code channels, corresponding to
64 Walsh functions, each 64 chips long.* To see how the Walsh functions provide the channelization, we will consider a
hypothetical example of four code channels produced by the four orthogonal Walsh functions shown in Fig. 2.  The sums
shown in Fig. 1 are modulo-2, as defined in Table I. They are appropriate when a 0,1 representation is used for binary
numbers and are equivalent to ordinary multiplication when a 1,–1 representation is used.  The Walsh functions use
nonreturn-to-zero (NRZ) values of 1 and –1 to represent binary numbers.

* The chip interval is the clock period of the spreading code used in a spread-spectrum system. In this paper, a chip corresponds to one binary digit of the
pilot pseudonoise sequences shown in Fig. 1.
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Pilot Channel (All Zeros)

Transmit
Filter

Transmit
Filter

I-Channel Pilot Pseudonoise Sequence
1.2288 Mbits/s

Q-Channel Pilot Pseudonoise Sequence
1.2288 Mbits/s
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Walsh Function w0
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Same As Above

Walsh Function w1

Walsh Function w63

Code Channel 63

cos(2�fct)

B0

A1

B1

A63

B63
–sin(2�fct)

�

�

Fig. 1. Forward CDMA (base station transmitter) channel structure.
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Table I
Modulo-2 Sum (XOR)

� 0 1

0 0 1

1 1 0

The Walsh functions are said to be orthogonal because the inner product of wi(t) and wj(t) is:

�
4

0

wi(t)wj(t)� 4,

� 0,

i� j

i� j

(1)

that is, the inner product of two distinct Walsh functions is zero.

The orthogonality property produces the channelization, as we can see by considering the transmission of a binary digit
(bit) that is four chip intervals long on channel 1.  If the bit is represented by ±1, then at the transmitter and, ideally, at the
receiver the bit is represented by ±w1(t).  At the receiver, an operation equivalent to equation 1 is performed on ±w1(t)wi(t)
for each channel for i = 0, 1, 2, 3. This operation produces the result:

�
4

0

w1(t)wi(t)� 4,

�

i� 1

i� 1

(2)

0,

�

Therefore, we see that the bit can be detected on channel 1, but it does not appear on channels 0, 2, or 3.

The 64 Walsh functions used for the channelization shown in Fig. 1 are represented by 64-bit words that are rows (or
columns) of a 64�64 Hadamard matrix.  The Hadamard matrix is orthogonal (i.e., rows or columns are orthogonal) and can
be generated by the following simple algorithm:

� A 2�2 Hadamard matrix is defined as:
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Fig. 2. Four orthogonal Walsh functions.

H2 � �00 0
1
�. (3)

� A 4�4 Hadamard matrix is generated as:

H4 � �H2

H2

H2

H2
� ���
�

0
0
0
0

0
1
0
1

0
0
1
1

0
1
1
0

�
	



. (4)

� In general, a Hadamard matrix H2n is generated from a Hadamard matrix Hn by:

H2n � �Hn

Hn

Hn

Hn
�. (5)

The inner product of two rows of Hn is obtained by the modulo-2 summing of the two rows, element by element, and
counting the difference between the number of 0s and 1s, where the modulo-2 sum is the XOR operation defined in Table I.
For example, to obtain the inner product of rows 1 and 2 of H4, we perform the following operation:

0 0 0 0

� 0 1 0 1 (6a)  

0 1 0 1 ⇐ Inner product = number of 0s
 minus number of 1s = 0

If a 1,–1 representation is used for the binary numbers, then the inner product given by equation 6a is simply:

1 1 1 1

× 1 –1 1 –1 (6b)  

1 –1 1 –1 ⇐ Inner product = sum = 0.

Fig. 3 shows an example of the pseudonoise encoding shown in Fig. 1 for code channel 1. The input bits, denoted by di, are
added (modulo-2) to the Walsh function w1 and then to the I-channel and Q-channel pseudonoise sequences ipn and qpn. The
resulting modulo-2 sums are converted to ±1 for Ik and Qk, where +1 represents binary 0 and –1 represents binary 1.  The
discrete time signals Ik and Qk provide the inputs to the transmit filters.  The outputs of these filters are the superposition of
pulses centered at discrete times tk, k = ..., 0, 1, 2, ..., as illustrated in Fig. 4.

If the pulse for Ik or Qk equals zero when t = ti, i�k, then the pulses at the outputs of the transmit filters do not interfere
with each other at discrete times tk, k = ..., 0, 1, 2, ... and we say the transmit filters introduce zero intersymbol interference.



4        February 1996 Hewlett-Packard Journal

d1
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Fig. 3. Pseudonoise encoding.

Time t

t

t

t

k+1

k+1

k–1

k–1

For I        = 1

kFor I    = 1

k

For I        = –1

Fig. 4. Transmit filter output.

The transmit filters illustrated in Fig. 4 introduce zero intersymbol interference.  However, the transmit filter specified in the
IS-95 standard does introduce intersymbol interference.  Moreover, the base station transmitter specified in the standard
must incorporate an all-pass phase preequalizer, which produces an asymmetric transmitter pulse response.

The reason for the I-Q structure shown in Fig. 1 will become clearer after we consider code-domain signals.

Code-Domain Signals (Forward Link)
Any sinusoidal carrier with amplitude and phase modulation can be written mathematically as:

X(t)� A(t)cos[�ct��(t)] (7)

where ωc = 2πfc (fc is the carrier frequency in Hz), A(t) is the instantaneous amplitude, and Φ(t) is the instantaneous phase.

Using the trigonometric identity cos(θ+ϕ) = cosθcosϕ – 
sinθsinϕ, equation 7 can be rewritten as:

X(t)� A(t)cos�(t)cos�ct – A(t)sin�(t)sin�ct

� I(t)cos�ct – Q(t)sin�ct,
(8)

where the in-phase component of the signal (the component multiplying the carrier cosωct) is:

I(t)� A(t)cos�(t), (9)

and the quadrature component (the component multiplying the quadrature carrier –sinωct) is:

Q(t)� A(t)sin�(t). (10)

Using Euler’s identity, ejθ = exp(jθ) = cosθ + jsinθ, we can write:

I(t) � jQ(t)� A(t)ej�(t). (11)

I(t)+jQ(t) is called the complex envelope of the modulated carrier and is represented as a rotating phasor as shown in Fig. 5.
The tip of the rotating phasor moves as a function of time forming the locus referred to as the signal trajectory.
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Fig. 5. The complex envelope of the modulated carrier is represented as a rotating phasor. The locus of the tip of the

phasor is called the signal trajectory.

The forward link of the CDMA system uses quadrature phase-shift keying (QPSK) modulation.  First, we will consider the
case in which only the pilot signal is present. In this case, if no intersymbol interference is introduced by the transmit filter,
the signal trajectory passes through four discrete points separated by multiples of 90 degrees in the I-Q plane as shown in
Fig. 6. These four points on the I-Q diagram are referred to as the signal constellation for the QPSK modulation.

The coordinates of these points represent the four possible values of a pair of bits.  As the signal moves along its trajectory,
the coordinates at discrete time tk represent the pair of bits transmitted at this time. The example signal trajectory
presented in Fig. 6 is for the first eight pairs of bits of the pilot sequences with corresponding times tk, as given in Table II.

Table II
First 8 Pairs of Bits of Pilot Sequences

k 1 2 3 4 5 6 7 8

ipn –1 1 –1 1 –1 1 1 –1

qpn –1 1 1 –1 –1 –1 –1 1

Now we will consider a case in which the pilot (code channel 0) and code channel 1 are transmitted simultaneously.  In this
case, the transmitter signal can be represented as:

X(t) � A0(t)cos��ct ��0(t)�

� A1(t)cos��ct ��1(t)� ,
(12)

where A0(t) and Φ0(t) represent the amplitude and phase modulation introduced by the pilot and A1(t) and Φ1(t) represent
the amplitude and phase modulation introduced by code channel 1.  Using the trigonometric identity cos(θ+ϕ) = cosθcosϕ –
sinθsinϕ, we can write equation 12 as:

X(t) � �A0(t)cos�0(t) � A1(t)cos�1(t)�cos(�ct)

– �A0(t)sin�0(t) � A1(t)sin�1(t)�sin(�ct)

� I(t)cos(�ct) – Q(t)sin(�ct),

(13)

where

I(t) � A0(t)cos�0(t) � A1(t)cos�1(t) (14)

and

Q(t) � A0(t)sin�0(t) � A1(t)sin�1(t). (15)

From equations 14 and 15, it is clear that since

I(t) � I0(t) � I1(t) and Q(t) � Q0(t) � Q1(t), (16)

I(t) and Q(t) are simply the superposition of the corresponding components produced by the pilot and code channel 1.
Therefore, we can superimpose I-Q diagrams.

To simplify the description at this point, we will consider the code channels produced by four orthogonal Walsh words each
four chips long, as shown in Table III.
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Table III
Orthogonal Walsh Words

w0: 1 1 1 1

w1: 1 –1 1 –1

w2: 1 1 –1 –1

w3: 1 –1 –1 1

For illustrative purposes, we will assume that the peak magnitude 2� a0 � �A0�tk��peak
 of the pilot (code channel 0) is 0.8 2�

and the magnitude 2� a1 � �A1�tk��peak
 of the signal for code channel 1 is 0.6 2� , so that the root-sum-square of the pilot and

code channel 1 signals is:

0.82 � 0.62� � 1.0 . (17)

In this case, the pilot signal has the trajectory shown in Fig. 6, except that the signal coordinates are (±0.8, ±0.8) instead of
(±1, ±1).

(–1, 1)
Q

(1, 1)

(–1, –1)
(1, –1)

I

t

t   , t   , t

3      8t   , t

t   , t

2

1      5
4      6      7

Fig. 6. Example of a signal constellation (points) and a signal trajectory.

To determine the trajectory produced by code channel 1, we must consider multiplying Walsh word w1 by data bits.  For our
example, we will assume data bits for two Walsh function intervals: d = 1, –1. We obtain values for I1 and Q1 as presented in
Table IV.

Table IV
Calculation of I1 and Q1

              Time t1 t2 t3 t4 t5 t6 t7 t8

ipn –1 1 –1 1 –1 1 1 –1

qpn –1 1 1 –1 –1 –1 –1 1

w1 1 –1 1 –1 1 –1 1 –1

w1ipn –1 –1 –1 –1 –1 –1 1 1

w1qpn –1 –1 1 1 –1 1 –1 –1

d1 1 . . . . . . . . . . . .  –1 . . . . . . . . . . . .

d1w1ipn –1 –1 –1 –1  1 1 –1 –1

d1w1qpn –1 –1 1 1  1 –1 1 1

a1 0.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I1 = a1d1w1ipn –0.6 –0.6 –0.6 –0.6 0.6 0.6 –0.6 –0.6 –0.6

Q1 = a1d1w1qpn –0.6 –0.6 0.6 0.6 0.6 –0.6 0.6 0.6 –0.6

First, the ipn and qpn sequences are multiplied by Walsh word w1  = (1  –1   1  –1) repeated every 4 chips.  This result is then
multiplied by the data sequence d1 = 1 for the first 4 chips and d2 = –1 for the next 4 chips, and finally, the two sequences are
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multiplied by the amplitude a1 = 0.6. Values of –0.6 were arbitrarily added for time t9 to be used later to illustrate the effect
of time offset. The resulting sequences for I0,Q0 and I1,Q1 are shown in Table V and their I-Q diagrams are shown in Fig. 7.

Table V
Superposition of I-Q Sequences

Time t1 t2 t3 t4 t5 t6 t7 t8

I0 –0.8 0.8 –0.8 0.8 –0.8 0.8 0.8 –0.8

Q0 –0.8 0.8 0.8 –0.8 –0.8 –0.8 –0.8 0.8

I1 –0.6 –0.6 –0.6 –0.6 0.6 0.6 –0.6 –0.6

Q1 –0.6 –0.6 0.6 0.6 0.6 –0.6 0.6 0.6

I –1.4 0.2 –1.4 0.2 –0.2 1.4 0.2 –1.4

Q –1.4 0.2 1.4 –0.2 –0.2 –1.4 –0.2 1.4

In the above example, we considered the situation of a CDMA signal consisting of the pilot and code channel 1 and showed
that we could obtain the I-Q diagram for the composite signal simply by superimposing the I-Q diagrams for the individual
signals.  For our example of two signals, the two 4-point I-Q diagrams produced an 8-point diagram for the composite signal.
This principle of superposition can be applied to any number of code channels and provides a convenient geometric way of
constructing and visualizing signals.  For example, if we consider three code channels with signal amplitudes of a0, a1, and
a2, then we obtain an I-Q diagram with coordinates (x,y) in which x and y take on the eight values ±a0±a1±a2 to produce a
signal constellation with 16 points.  We must keep in mind that the above discussion applies only for the condition of zero
intersymbol interference.

Signal Acquisition (Timing and Frequency Estimation)
To perform the measurements of the CDMA signals, it is necessary to estimate the precise carrier frequency so that the
signal to be measured can be converted to baseband, that is, so it can be represented in terms of an I-Q signal trajectory as
discussed above.  Furthermore, it is necessary to determine the timing of the signal to be measured relative to the zero time
reference of the pseudonoise sequences ipn and qpn which are used to spread the spectrum of the transmitter signal.  The
estimation of timing and carrier frequency are discussed in this section.

Suppose that the transmitter signal to be measured has an unknown frequency error ∆ω, unknown phase θ0, and an
unknown time delay τ0, so that after down-conversion to baseband, the signal available for measurement can be represented
in the form of equation 7 with ωc replaced with ωc+∆ω, t replaced with t–τ0, and a phase term θ0 added.  That is, the signal
to be measured can be represented as:

X(t–�0) � A(t– �0)cos[(�c ��)(t–�0) �(t–�0) �0],� � � (18)

which can be written, using the trigonometric identity cos(θ+ϕ) = cosθcosϕ – sinθsinϕ, as:

X(t–�0) �

A(t–�0)cos[��t – (�c ��)�0 ��(t– �0) �0]cos�ct

– A(t–�0)sin[��t – (�c ��)�0 �(t–�0)� �0]sin�ct .

�

� �

� (19)

From equation 19, we obtain the in-phase and quadrature components as:

Ix(t) A(t–�0)cos[��t (�c ��)�0 �(t–�0) �0]� (20)��–�

and

Qx(t) A(t–�0)sin[��t (�c ��)�0 �(t–�0) �0]� (21)��–�

Using Euler’s identity, ejθ = exp(jθ) = cosθ + jsinθ, we can write the complex envelope as:

Y(t) � Ix(t)� jQx(t)

� A(t–�0)exp�j[��t–(�c ��)�0 �(t– �0) �0]�,�
(22)

� �

from which we see that the baseband signal is a rotating phasor with magnitude A(t–τ0) and phase [∆ωt – (ωc+∆ω)τ0 +
Φ(t–τ0 ) + θ0] as shown in Fig. 8.

We see that if τ0 � 0 but ∆ω = 0, then the amplitude A(t–τ0) and phase Φ(t–τ0) are delayed versions of A(t) and Φ(t) and a
phase shift of –ωcτ0 +θ0 is added.  Therefore, the effect of the time delay is simply a rotation of the I-Q diagram by an angle
of –ωcτ0 +θ0 and a change of τ0 in the times at which the signal trajectory passes through the constellation points.  When
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Fig. 7. Signal constellation and trajectory for (a) pilot channel, (b) code channel 1, and (c) the sum of the pilot 

channel and code channel 1.

∆ω � � 0, the frequency error adds an additional phase shift of –∆ωτ0 and a constant-rate phase rotation of ∆ωt.  The result of
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I(t)

Q
(t)

�(t – �0) + ��t – (�c + ��)�0 + �0

A(t – �0)

Fig. 8. Complex envelope of the baseband signal.

the constant-rate phase rotation will, in general, be that the signal trajectory will no longer pass through discrete points, so
the I-Q diagram will not resemble its counterpart for zero frequency error.

The functions used to estimate τ0, ∆ω, and θ0 can be described by considering a pilot reference signal given as:

S	t– �R,�R
 � A0	t– �R
exp�j��Rt ��0	t– �R
�� , (23)

in which A0(t) and Φ0(t) are the instantaneous amplitude and phase of the complex envelope corresponding to the pilot
only, τR is a variable time delay, and ωR is a variable frequency.  Using the observable baseband signal Y(t) given by equation
22 and the reference signal given by equation 23,  the correlation function for these two signals is:

P	�R,�R
 ��
k

Y	tk
S * 	tk–�R,�R
 . (24)

The sample interval tk – tk–1 used here is different from that used previously and, in general, would be a fraction of the chip
interval.  The magnitude of P(τR,ωR) could be maximized with respect to τR and ωR to determine the estimates �^0  and ��^  of
τ0  and ∆ω. However, a normalized version of the squared magnitude of this function is used to facilitate the search strategy
for finding �^0. �^0 is found by forming the function

�P	�R, 0
�
2

�
k

�S	tk– �R, 0
�
2�

k

�Y	tk
�
2

(25)

and finding the value τR = �^0 for which this function is maximum.

Maximizing equation 25 corresponds to maximizing the correlation between the observable baseband signal and an ideal
reference signal for the pilot only.  Usually, the observable baseband signal will consist of the superposition of a number of
code channels. However, since the correlation between the pilot and the other code channels is small, the maximization of
equation 25 provides a good initial estimate of τ0.

P(τR, 0) is sensitive to frequency error ∆ω, which limits the range of ∆ω for which equation 25 can be used.  We can obtain
an expression for the frequency response of P(τ0,0) by setting

Y(t) � S	t– �0,��
 (26)

to obtain

P	�0, 0
 ��
k

A2
0	tk–�0
ej��tk . (27)

To simplify the evaluation of this expression, consider sampling at points for which the signal trajectory passes through the
constellation points of the pilot, so that A2

0	tk–�0
 is constant. In this case, the magnitude of P(τ0,0) is:

�P	�0, 0
� �
sin	T

2
��


sin	 T
2K

��

, (28)

where T is the length of the data record used to calculate P(τ0,0) and K is the number of samples in the data record.

From the sketch of P(τ0,0) in Fig. 9, we see that P(τ0,0) = 0 for ∆ω = 2π/T.  In devising the search strategy for finding �^0, it
was assumed that frequency errors would be less than ±π/T. Therefore, reliable estimates of τ0 can be obtained only if

|��| � �

T
. (29)

After the value of �^0 is determined, we obtain an estimate, ��^ , of ∆ω from the discriminator formed as the ratio of the
difference over the sum of �P	�^0,��0
�  and �P	�^0, –��0
� :
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��
^ � �

T

�P��^0,��0�� – �P��^0, –��0��
�P��^0,��0�� � �P��^0, –��0��

, (30)

where ∆ω0 = π/T. The formation of this discriminator is illustrated in Fig. 10, where P��^0,��0� is shown by the upper dashed
curve, –P��^0, –��0� is shown by the lower dashed curve, and the discriminator curve, ��^ T/π, is shown by the solid curve.

1.2

0.9

0.6

0.3

0

–0.3
–3 –2 –1 0 1 2 3

T�� ���

P(
   

  ,
 0

)
0
�

Fig. 9. The correlation function P(t0,0) as a function of frequency error.

The function given by equation 30 is a linear function of ∆ω for |∆ω| < π/T and provides a reasonably good initial estimate of
the frequency error when a significant percentage (on the order of 10% or more) of the total transmitter power is contained
in the pilot channel.

An estimate of the transmitter phase is obtained from the phase of the correlation function with τR  =  �^0 and ωR  = ��^ :

�
^

0 � tan–1��{P��^0,��^ �}
�{P��^0,��^ �}

� (31)

where �{z} and ℑ {z} are the real and imaginary parts of z, respectively.

Fig. 10. Formation of the discriminator of equation 30.   is shown by the upper dashed curve,      is

shown by the lower dashed curve, and the discriminator curve,      , is shown by the solid curve.
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Because of the weak correlation between the pilot channel and the other code channels, equations 25, 30, and 31 provide
good initial estimates of τ0, ∆ω, and θ0.  The estimates of these parameters are refined after the intersymbol interference has
been removed by the complementary filter discussed later in this article. Further refinement of these parameters is achieved
when estimating time and phase offsets of the code channels relative to the pilot channel.  The estimation of the offset
parameters is discussed later in this article.

Code-Domain Power Spectrum
The code-domain power spectrum is given in terms of the coefficients ρi, where ρi is defined as the fractional part of the
transmitter power contained in the ith code channel.  The first step in calculating the code-domain power spectrum is to
multiply I(tk) and Q(tk) by ipn and qpn.  The results of these calculations are shown in Table VI.
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Table VI
Despreading of Ik and Qk

1st Walsh function
interval

2nd Walsh function
interval

Time t1 t2 t3 t4 t5 t6 t7 t8

I(tk) –1.4 0.2 –1.4 0.2 –0.2 1.4 0.2 –1.4

Q(tk) –1.4 0.2 1.4 –0.2 –0.2 –1.4 –0.2 1.4

ipn  –1  1    –1 1 –1 1 1 –1

qpn  –1  1    1 –1 –1 –1 –1 1

ZI = I �ipn 1.4 0.2 1.4 0.2 0.2 1.4 0.2 1.4

ZQ = Q�qpn 1.4 0.2 1.4 0.2 0.2 1.4 0.2 1.4

The code-domain power spectrum is:

i�
1

�
M

k�1

�Rik
�2

�
N

h�1

��M
k�1

ZhkR*
ik�

2

�
N

h�1

�
M

k�1

�Zhk
�2

,ρ (32)

where Zhk is the kth sample of the despread signal in the hth Walsh function interval, Rik is the kth chip of the ith Walsh
function, M is the number of chips in a Walsh function, and N is the number of Walsh function intervals in the measurement
interval. The calculations of ρi, i = 0, 1, 2, 3 for the above example are presented in Table VII (j = � 1� ).

Table VII
Calculation of ρi for the Example

Zhk R0k ZhkR*
0k R1k ZhkR*

1k

h=1 1.4+j1.4 1+j 2.8   1+j   2.8

 ” 0.2+j0.2 1+j 0.4 –1–j –0.4

 ” 1.4+j1.4 1+j 2.8    1+j   2.8

 ” 0.2+j0.2 1+j 0.4 –1–j –0.4

h=2 0.2+j0.2 1+j 0.4    1+j   0.4

 ” 1.4+j1.4 1+j 2.8 –1–j –2.8

 ” 0.2+j0.2 1+j 0.4    1+j   0.4

 ” 1.4+j1.4 1+j 2.8 –1–j –2.8

�
4

k�1

�Rik
�2 � 8

�
2

h�1

�
4

k�1

�Zhk
�2 � 8�1.42� � 8�0.22� � 16

(33)

�
2

h�1

��4
k�1

ZhkR0k�
2

� 6.42 � 6.42 � 81.92 (34)

�0 �
81.92
8(16)

� 81.92
128

� 0.64 (35)

�
2

h�1

��4
k�1

ZhkR1k�
2

� 4.82 � 4.82 � 46.08 (36)

�1 �
46.08
128

� 0.36 (37)
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�2 � �3 � 0 (38)

�0 � �1� �2� �3 � 1.0000 . (39)

Since we selected signal amplitudes a0 = 0.8 and a1 = 0.6, the total signal energy in our measurement interval (two Walsh
function intervals) is proportional to (0.82 + 0.62) = 1.0 and the percentages of signal energy in the pilot and code channel 1,
respectively, are 0.82 = 0.64 and 0.62 = 0.36.  We see, therefore, that the results of this example verify that ρi is the fractional
part of the energy of the observed signal that is contained in the ith code channel.

Errors
Various errors will produce a transmitter signal that does not match the ideal reference signal. These errors will manifest
themselves as a distribution of the transmitter signal energy among the code channels that varies from the ideal distribution.
As mentioned earlier, the transmitter signal may have an unknown time reference and carrier frequency. However, as we
saw, these parameters are estimated so that they can be removed from the signal to be measured.  Therefore, frequency
errors and time delay are compensated to a sufficient degree of accuracy to have minimal influence on the distribution of
code-domain power.

Other types of errors are not compensated. These include signal impairments caused by nonideal components in the
transmitter such as nonideal filters, nonlinearities, gain and phase imbalances, mixer spurs, quantization errors, and others.

Waveform Quality Factor (ρ). A measure of the quality of the transmitter signal is obtained by measuring ρ, defined as:

��

��
k

ZkR*0k�2

�
k

�R0k�
2�

k

�Zk�
2

(40)

where Zk is the kth sample of the despread signal, R*0k = 1–j, and only the pilot is transmitted.  By comparing equations 40
and 32, we see that ρ and ρ0 are similar but not identical.  When ρ0 is calculated, the energy in code channel 0 is found for
each Walsh function interval in the measurement interval and the sum of these energies is obtained. When ρ is calculated,
the energy of the projection onto R*0k = 1–j over the entire measurement interval is obtained. For random type errors,
values obtained for ρ and ρ0 will be essentially equal. However, certain types of errors such as uncompensated frequency
errors will yield different values for ρ and ρ0.

According to equations 32 and 40, a fixed phase difference between the measured baseband signal and the reference signal
will not affect ρ and ρi. This is true because these functions involve the calculation of energies that are insensitive to phase,
that is,

�ej�0 ZR*�2 � �ZR*�2.

Time and Phase Offset Errors. Time offsets and phase offsets of the code channels relative to the pilot channel are errors with
tolerances specified in IS-97.  Offset errors in a particular code channel will cause energy from that code channel to leak
into other code channels and thereby cause a change in the distribution of code-domain power. An example of time and
phase offset errors is considered in this section.

Suppose there are time and phase offsets of channel 1 with respect to channel 0 of ∆τ1 and ∆θ1, respectively.  For illustrative
purposes, we will assume that the pulse response of the transmit filter is triangular, as shown in Fig. 11, so the transmit filter
is considered a linear interpolator of adjacent input values. We will extend our example by considering the effects of offsets
of ∆τ1 = 0.1/Tc, where Tc is the chip interval, and ∆θ1 = 0.1 radian. We compute I1 and Q1 for this case as presented in Table
VIII.
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Table VIII
Calculation of ρi for the Example with Time and Phase Offsets

From timing error (linearly interpolate 90% current value, 10% future value)

Time t1 t2 t3 t4 t5 t6 t7 t8

I1 –0.6 –0.6 –0.6 –0.48 0.6   0.48 –0.6 –0.6

 Q1 –0.6   –0.48   0.6 0.6   0.48 –0.48   0.6     0.48  

From phase error (I1cos0.1 – Q1sin0.1, I1sin0.1 + Q1cos0.1)

I1 –0.5371 –0.5491 –0.6569 –0.5375   0.5491   0.5255 –0.6569 –0.6449

Q1 –0.6569 –0.5375   0.5371   0.5491   0.5375 –0.4297   0.5371   0.4177

I0 –0.8   0.8 –0.8   0.8 –0.8   0.8   0.8 –0.8

Q0 –0.8   0.8   0.8 –0.8 –0.8 –0.8 –0.8   0.8

I –1.3371   0.2509 –1.4569   0.2625 –0.2509   1.3255   0.1431 –1.4449

Q –1.4569   0.2625   1.3371 –0.2509 –0.2625 –1.2297 –0.2629   1.2177

Multiply by ipn and qpn to obtain Z = ZI+jZQ

ZI   1.3371   0.2509   1.4569   0.2625   0.2509   1.3255   0.1431   1.4449

ZQ   1.4569   0.2625   1.3371   0.2509   0.2625   1.2297   0.2629   1.2177

Zhk R0k ZhkR*
0k R1k ZhkR*

1k

 h=1   1.3371+j1.4569   1+j   2.7940+j0.1198   1+j   2.7940+j0.1198  

”   0.2509+j0.2625   1+j   0.5134+j0.0116 –1–j –0.5134–j0.0116

”   1.4569+j1.3371   1+j   2.7940–j0.1198    1+j   2.7940–j0.1198

”   0.2625+j0.2509   1+j   0.5134–j0.0116 –1–j –0.5134+j0.0116

 h=2   0.2509+j0.2625   1+j   0.5134+j0.0116   1+j   0.5134+j0.0116  

”   1.3255+j1.2297   1+j   2.5552–j0.0958 –1–j –2.5552+j0.0958

 ”   0.1431+j0.2629   1+j   0.4060+j0.1198   1+j   0.4060+j0.1198  

”   1.4449+j1.2177   1+j   2.6626–j0.2272 –1–j –2.6626+j0.2272

Zhk R2k ZhkR*
2k R3k ZhkR*

3k

 h=1   1.3371+j1.4569   1+j   2.7940+j0.1198   1+j   2.7940+j0.1198  

”   0.2509+j0.2625   1+j   0.5134+j0.0116 –1–j –0.5134–j0.0116

”   1.4569+j1.3371 –1–j –2.7940+j0.1198 –1–j –2.7940+j0.1198

 ”   0.2625+j0.2509 –1–j –0.5134+j0.0116   1+j   0.5134–j0.0116  

h=2   0.2509+j0.2625   1+j   0.5134+j0.0116   1+j   0.5134+j0.0116

”   1.3255+j1.2297   1+j   2.5552–j0.0958 –1–j –2.5552+j0.0958

”   0.1431+j0.2629 –1–j –0.4060–j0.1198 –1–j –0.4060–j0.1198

”   1.4449+j1.2177 –1–j –2.6626+j0.2272    1+j   2.6626–j0.2272
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From the values obtained in Table VIII, we compute the code-domain power coefficients as follows:

�
4

k�1

�Rik�
2�

2

h�1

�
4

k�1

�Zhk�
2
� 121.1648 . (41)

�
2

h�1

��4
k�1

ZhkR*
0k�

2

� |6.6148|2 � |6.1372– j0.1916|2

� 81.4575 .
(42)

�
2

h�1

��4
k�1

ZhkR*
1k�

2

� |4.5612|2 � |–4.2984 j0.4544|2

� 39.4873 .
(43)

�

�
2

h�1

��4
k�1

ZhkR*
2k�

2

� |j0.2628|2 � |j0.0232|2

� 0.0696 .

(44)

�
2

h�1

��4
k�1

ZhkR*
3k�

2

� |0.2164|2 � |0.2148–j0.2396|2

� 0.1504 .

(45)

�0 �
81.4575

121.1648
� 0.6723 (46)

�1 �
39.4873

121.1648
� 0.3259 (47)

�2 �
0.0696

121.1648
� 0.0006 (48)

�3 �
0.1504

121.1648
� 0.0012 (49)

We note that the timing and phase errors caused some of the energy from code channel 1 to leak into the other code
channels. However, again

�0 � �1 � �2� �3 � 1.0000 . (50)

This condition is always satisfied regardless of the errors introduced to the data sequence Z =ZI+jZQ.

Estimates of Time and Phase Offsets. We saw in the above example that when code channel 1 was offset in time and phase
relative to the pilot channel, errors were introduced that caused the relative energy to increase in code channels 0, 2, and 3
and to decrease in channel 1. To determine the values of the offset errors, the mean squared difference between the
observable data, Z, and an ideal reference signal, R, is minimized.  For the example considered above, the errors introduced
by timing and phase offsets are equal to the difference in ZI+jZQ for the case of no errors given in Table VII and the case
with phase and time offset errors given in Table VIII.  These errors as a function of time tk are listed in Table IX.

Tc = Chip Interval

h(t)

0 T 2T 

Time t
c c

T c
1

Fig. 11. Simplified impulse response of the transmit filter.
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Using the listed values, the mean squared error is:

MSE � 1
8



8

k�1

�EQk � jEIk�
2

� 1
8



8

k�1

�E2
Qk � E2

Ik	

� 0.13876 .

(51)

To estimate timing and phase offset errors, the active code channels are determined by calculating ρi for every i and
identifying the channels for which the values of ρi are above a preset threshold. For example, if a threshold of 0.01
(corresponding to –20 dB) is used, every channel for which ρi > 0.01 will be declared an active channel.

In addition to determining the active code channels, it is necessary to determine the data sequence dih for each active
channel in which the subscript i denotes the ith code channel and the subscript h denotes the hth Walsh function interval in
the measurement interval. The data detector incorporated into the function used to calculate ρi is:

d
^

ih � sgn���

k

ZhkR*
ik�	 , (52)

where

sgn(u) �

� –1, u � 0

1, u � 0
(53)

and �{z} is the real part of z.  The index k varies over the chips in a Walsh function interval (k = 0 to 3 in our example).  From
the values tabulated in Table VIII, we can generate the detected data as shown in Table X.

Table IX
In-Phase (EI) and Quadrature (EQ) Components of Errors 

      in Example for Timing and Phase Offset Errors

Time t1 t2 t3 t4 t5 t6 t7 t8

EI –0.0629 0.0509 0.0569 0.0625 0.0509 –0.0745 –0.0569 0.0449

EQ 0.0569 0.0625 –0.0629 0.0509 0.0625 –0.1703 0.0629 –0.1823

Table X
Calculations for Data Detection in the Example

i,h ρi 

4

k�1

ZhkR*
0k d

^
ih

0,1     0.6723 (active)   6.6148   1

0,2 ”   6.1372   1

1,1     0.3259 (active)   4.5612   1

1,2 ” –4.2984+j0.4544 –1

2,1     0.0006 (inactive)

2,2 ”

3,1     0.0012 (inactive)

3,2 ”

After the active code channels and their data sequences are determined, an ideal signal of the form of equations 9 and 10
can be generated for each active code channel.  The in-phase and quadrature components of the ideal signals are:

Ii(t) � Ai(t)cos�i(t) (54)

and

Qi(t) � Ai(t)sin�i(t) (55)
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where Ai(t) and Φi(t) are the amplitude and phase of the ideal signal of the ith code channel passing through the points
(±1,±1) in the I-Q diagram as shown in Fig. 6. The reference signal is generated by superimposing the ideal signals given by
equations 54 and 55 for each active code channel.  The resulting in-phase and quadrature components of the ideal reference
signal are:

Iref(t) ��
i

�
^

iAi(t – �^i) cos���^ t ��i(t – �^i) � �
^

i� (56)

and

Qref(t) ��
i

�
^

iAi(t –�^i)sin���^ t ��i(t –�
^

i) � �
^

i� , (57)

where ��^   is frequency error,  �^ i is the relative amplitude ��^ i � �i

 	 , �^i  is the time delay, and �

^
i  is the phase of the ith code

channel.  The summations are over the set of active code channels.

The frequency error, time delays, and phases are determined by finding values of ��^ , �^ i, �
^

i , and �
^

i  for all values of i
corresponding to the active code channels to minimize the mean squared difference between the observable sequence Z(tk)
= ZI(tk) + jZQ(tk) and the reference R(tk) = Iref(tk) + jQref(tk), which is:

�
2 � 1

NM
�
NM

k�1

�Z�tk	 – R�tk	�
2
, (58)

where M and N are the same as in equation 32. �^0 and ��^  are used to update previous estimates of time delay and
frequency. Estimates of time and phase offsets obtained from �^i  and �

^
i  are:

��
^

i � �
^

i � �
^

0

��
^

i � �
^

i � �
^

0 .

(59)and

For the example above, values of ��^ , �^ i, �
^

i , and �
^

i  would be found to produce zero mean squared difference and error-free
estimates of these parameters.  In general, however, errors other than those introduced by timing and phase offsets would
be present, so that after the minimization of the mean squared difference, a nonzero residual between the reference and the
observable would exist and the parameters would be estimated with some error in the estimates.

Signal Flow Diagram
The signal flow diagram for the CDMA power, timing, and phase offset measurement algorithms is shown in Fig. 12. The
signal under test from the base station transmitter is down-converted to a 3.6864-MHz IF signal that is sampled at 4.9152
MSa/s.  The digitized IF signal is passed through a finite-impulse-response (FIR), linear-phase, digital IF filter centered at
1.2288 MHz.  This filter has a flat passband 1.4 MHz wide, which is considerably wider than the 1.23-MHz bandwidth of the
IF signal and provides blocking at dc and 359.2 kHz.  Indeed, the primary purpose of the IF filter is to block these signal
components.

Following the IF filter, the signal is down-converted to in-phase (I) and quadrature (Q) baseband signals.  In the
down-converter, the I and Q signals are filtered by flat, FIR, linear-phase, low-pass filters with passbands from 0 to 700 kHz
wide and stop bands from 1.16 to 2.0 MHz wide.  The full sample rate of 4.9152 MSa/s is retained at the output of the
down-converter to provide maximum accuracy at the correlator.

The next function after the down-converter is the correlator, which provides an estimate of the timing of the signal under
test. The inputs to the correlator are the baseband signal from the down-converter and an internally generated reference
signal.  This reference signal is the mathematically ideal signal that would be present at the output of the down-converter if
only the pilot signal were transmitted. The time origin of the reference signal corresponds to the first binary 1 following 15
binary 0s of the pseudonoise sequences ipn and qpn , as specified in the IS-95 standard.

The correlator performs the timing acquisition described earlier by finding the value of τR that maximizes the function given
by expression 25. Since this function is sensitive to frequency error, the correlator works reliably over a limited range of
frequency.  If T is the length of the record (in seconds) used in the correlator, then the maximum frequency error for which
the correlator will provide reliable acquisition is:

�fmax �
1

2T
. (60)

For example, if a 1.25-ms time record is used, then the maximum frequency error that will allow reliable acquisition in time
is ±∆fmax = ±400Hz.
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Fig. 12. Signal flow diagram for the HP 83203B CDMA power, timing, and phase offset measurement algorithms.

After the time delay τ0 is determined, the baseband signal is time-aligned with the reference signal.  This function is
performed in the synchronizer, which consists of a pair (for I and Q) of low-pass filters that resample the signals at a rate of
2.4576 MSa/s with a variable time delay to introduce the appropriate timing.

The synchronized baseband and reference signals are used in the frequency and phase preestimator to obtain initial
estimates of the carrier frequency and phase as given by equations 30 and 31.  These estimates are then used in the
frequency and phase compensator to largely remove ∆ω and θ0 from the baseband signals.

After obtaining a baseband signal that is compensated in frequency and phase, the next step is to remove the intersymbol
interference introduced by the transmit filter. This step is necessary to ensure the orthogonality of the code channels to
allow calculation of the code-domain power coefficients by the algorithm discussed earlier. Intersymbol interference is
removed by the complementary filter, which when cascaded with the transmit filter produces an overall filter response that
satisfies Nyquist’s criterion for zero intersymbol interference.

After the intersymbol interference is removed from the baseband signal by the complementary filter, refined estimates of
the carrier frequency and phase are obtained by minimizing the mean squared difference between the baseband signal and a
reference signal consisting of only the pilot. The procedure used here is similar to that used for estimating the frequency and
phase in conjunction with the time and phase offsets as described earlier.  After the intersymbol interference has been
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removed, it is unnecessary to include the effect of the transmit filters; this allows the pilot sequences to be used directly as
the reference signals.

After the refined estimates of carrier frequency and phase are obtained, the baseband signal is again passed through a
compensator and a complementary filter to improve the removal of frequency error, phase error, and intersymbol
interference from the baseband signal.

Following this second stage of compensation, the baseband signal is ready to be used for calculating ρi as described earlier.
This function is performed in the ρi calculator shown in the signal flow diagram.  Data bits are also detected in this function
that are needed to calculate the reference signal used for estimating time and phase offsets of code channels as described
earlier. This function could also be used to calculate the waveform quality factor ρ. However, this parameter is actually
calculated by another function developed for the HP 83203A using the procedure given in an earlier section.

The final steps in the signal flow diagram involve determining the time offsets and phase offsets of the active code channels
relative to the pilot channel. To estimate these offset parameters, it is necessary to generate an ideal reference signal
corresponding to the active code channels in which the amplitudes, phases, time delays, and frequencies of all of the code
channels in the reference signal can be controlled. The function that generates this ideal reference signal, referred to as the
reference signal synthesizer, is invoked by the parameter estimator, which uses a search procedure to minimize the mean
squared difference between the baseband test signal and the synthesized reference signal as described earlier.

Accuracy of the Measurement Equipment
Specifications for the HP 83203B (HP 8921A/600) are warranted performance. These specifications are derived from the
accuracy of the measurement algorithms, environmental considerations, measurement uncertainties, unit-to-unit variations,
and customer specification margins. Typical performance of the HP 83203B is significantly better than the published
specifications.

The minimum performance of a base station transmitter is specified in the IS-97 standard.  In section 11.1.3 of this standard,
Table 11.1.3.1, reproduced here as Table XI, specifies the frequency tolerance, time reference, pilot waveform quality, and
RF power output variation.

Table XI
Environmental Test Limits

(from Table 11.1.3-1 in IS-97 Standard)

Parameter Limit

Frequency
Tolerance

�0.05 ppm

Time Reference �10 µs

Pilot Waveform
Quality

ρ�0.912

RF Power Output
Variation

+2 dB, –4 dB

The carrier frequency of the RF signal to be tested is approximately 900 MHz, so the frequency tolerance given above
corresponds to an absolute frequency tolerance of ±45 Hz.  Since the HP 83203B can acquire a signal and accurately
estimate the frequency error when the frequency error is as large as ±400 Hz for a 1.25-ms measurement interval, frequency
errors within the above tolerance are easily accommodated.

The tolerance on pilot waveform quality significantly impacts the accuracy of the measurement algorithms.
Error-vector-magnitude-squared (evm2), which is defined as the ratio of the energy of the error to the energy of the
error-free transmit signal, can be shown to be approximately related to the waveform quality factor, ρ , as:

evm� 1 – 1� .ρ (61)

For the value of ρ  = 0.912 in Table XI,

evm� 1
0.912

– 1� � 0.31 , (62)

that is, the waveform quality specified in Table XI corresponds to a signal with an rms error of approximately 31%.

Other errors that impact the accuracy of the measurement equipment are time errors and phase differences between the
pilot channel and other code channels.  Tolerances on these errors are given in sections 10.3.1.2.3 and 10.3.1.3.3 of the IS-97
standard as less than ±50 ns for time errors and less than ±50 mrad for the phase differences.
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The accuracy of the waveform quality measurement equipment is specified in Table 12.4.2.1-1 of the IS-97 standard,
repeated here as Table XII.

Waveform quality is measured when only the pilot is transmitted.  We will discuss the accuracy in measuring each of the
parameters listed above and the measurement interval necessary to achieve the performance specified.

To measure code-domain power, test models for the base station are specified in Table 12.5.2-1 of the IS-97 standard,
reproduced here as Table XIII.

Table XII
Accuracy of Waveform Quality Measurement Equipment

(from Table 12.4.2.1-1 in the IS-97 Standard)

Parameter Symbol
Accuracy

Requirement

Waveform Quality ρ ±5�10–4 from
0.9 to 1.0

Frequency Error
(exclusive of test
equipment 
time-base errors)

∆f ±10 Hz

Pilot Time Alignment τ0 ±135 ns

Table XIII
Base Station Test Model, Nominal

(from Table 12.5.2-1 in the IS-97 Standard)

Type

Number
of

Channels

Fraction
of Power
(linear)

Fraction
of Power

(dB)
Comments

Pilot 1 0.2000 –7.0 Code channel 0

Sync 1 0.0471 –13.3 Code channel
32, always
1/8-rate

Paging 1 0.1882 –7.3 Code channel
1, full-rate only

Traffic 6 0.09412 –10 Variable code
channel
assignments;
full-rate only

The measurement algorithms have been tested and found to provide accurate results for signals with less than 10% of the
power in the pilot channel; however, in discussing the accuracy of the measurement algorithms in the next subsection, we
will only consider performance under the conditions prescribed by the nominal test model.

The accuracy required of the code-domain measurement equipment is given in Table 12.4.2.2-1 of the IS-97 standard using
the nominal test model given above.  This table is reproduced here as Table XIV.

We will discuss the accuracy of measuring each of the parameters given in Table XIV and give the minimum measurement
intervals and number of subestimates that must be averaged to achieve the accuracies specified.

Accuracy of the Measurement Algorithms
Dynamic Range. The flatness of the filters and the numerical accuracy of the computations used in all of the signal
processing algorithms for the HP 83203B are closely maintained to produce a computational error level of approximately
–55 dB. Since this error level is typically less than the level of the spurious signals and quantization noise introduced by the
analog down-conversion process and the analog-to-digital converter (ADC) used to digitize the IF signal under test, the
dynamic range of the HP 83203B is limited by the noise and spurious signal level at the output of the ADC.  The ADC uses
autoranging to maintain the signal level at the input of the quantizer at –1 dB to –10 dB from saturation. With the ADC
operating at –10 dB below saturation, the noise and

spurious signal level at the output of the ADC is approximately –45 dB relative to the digitized IF signal.   Therefore, the
analog and ADC hardware places a limit on the dynamic range of the code-domain power measurements of approximately
45 dB.
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Table XIV
Accuracy of Code-Domain Measurement Equipment

(from Table 12.4.2.2-1 in the IS-97 Standard)

Parameter Symbol
Accuracy

Requirement

Code-domain power coefficients ρi ±5�10–4f rom 5�10–4 to 1.0

Frequency Error (exclusive of test equipment
time-base errors)

∆f ±10 Hz

Code-domain time offset relative to  pilot ∆τi ±10 ns

Code-domain phase offset relative to pilot ∆θi ±0.01 radian

Accuracy in Measuring ρ and ρi. The accuracy in measuring waveform quality ρ and code-domain power ρi depends on the
accuracy of estimating time delay τ0 and frequency error ∆ω. The errors in the measurement of ρ produced by errors in
estimating τ0 and ∆ω are shown in Figs. 13a and 13b for measurement intervals of 1.04 ms and 2.08 ms. The error curves
correspond to transmitting an ideal pilot channel for which the true value of ρ is 1.0. Since the percentage error in the
measurement of ρ caused by frequency and timing errors is independent of the true value of ρ, the error curves presented
here apply to values of ρ from ρ = 1.0 to ρ<0.1. From Table XII, we see that the required measurement accuracy specified in
the IS-97 standard is ±5�10–4 for ρ = 0.9 to 1.0. This tolerance corresponds to a measurement error of –33 dB for ρ = 1.0,
which is shown in Figs. 13a and 13b.
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Fig. 13. Errors in the measurement of signal quality  produced by errors in estimating (a) t0 and (b) Dw for mea-

surement intervals of 1.04 ms and 2.08 ms. The error curves correspond to transmitting an ideal pilot channel for

which the true value of r is 1.0 and are valid for r = 0.1 to r = 1.0.

According to Table XII, frequency error must be measured to an accuracy of ±10 Hz and pilot time alignment must be
measured to an accuracy of ±135 ns. The uncertainty in the time reference of the ADC and errors of the time-delay estimator
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contribute to the measurement errors of pilot time delay.  In the HP 83203B, the ADC will contribute less than ±125 ns error
and the time-delay estimator will contribute less than ±10 ns error to the pilot time alignment measurement.  Therefore, for
purposes of determining the accuracies in measuring ρ and ρi, we can assume that limits on the errors of the measurements
of τ0 and ∆ω are:

–10 ns� �
^
0 – �0� 10 ns

–10 Hz� ��
^ – ��� 10 Hz.

and (63)

From the error curves in Fig. 13, we see that if the tolerances given by equation 63 are achieved, then for a measurement
interval of 1.04 ms, the accuracy requirement for measuring ρ is achieved. If a measurement interval of 2.08 ms is used, then
a timing error of �10 ns is satisfactory. However, for the longer measurement interval it is necessary to reduce the
tolerance of the frequency error to �6 Hz. We can effectively get a longer measurement interval and avoid the tighter
tolerance on frequency error by averaging several measurements, as considered later.

The errors caused in the measurement of ρ0 by errors in estimating τ0 and ∆ω are presented in Figs. 14a and 14b. The error
curves correspond to transmitting an ideal pilot in which the true value of ρ0 is 1.0.  This is the same as the signal model
used for the curves in Fig. 13. We see that the errors caused by timing and frequency errors are relatively insensitive to the
measurement interval when measuring code-domain power.  The reason for this is the difference in the lengths of the
correlators used for the code-domain power and waveform quality calculations. For code-domain power, correlated
energies are computed over subintervals one Walsh function interval in length and then 20 of these energy computations are
averaged in the case of the 1.04-ms measurement interval, or 40 are averaged in the case of the 2.08-ms measurement
interval. For the waveform quality calculation, the correlated energy over the entire measurement interval is computed.
Because the length of the correlator used for ρ is a factor of 20 or 40 greater than the length used for ρi, the measurement of
ρ is much more sensitive to uncompensated frequency errors than the measurement of ρi.
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Fig. 14. Errors caused in the measurement of ρ0 by errors in estimating (a) τ0 and (b) ∆ω. The error curves corre-

spond to transmitting an ideal pilot in which the true value of ρ0 is 1.0 (same signal model as for Fig. 13). The results

for ρi for i � 0 are essentially the same.



22        February 1996 Hewlett-Packard Journal

From the error curves in Fig. 14, we see that if the tolerances given by equation 63 are achieved, then the accuracy
requirement for ρ0 given in Table XIV is achieved. Again, as with ρ, the percentage error in measuring ρ0 is independent of
the true value of ρ0.

The curves in Fig. 14 were obtained for ρ0. However, since all code channel measurements experience essentially the same
sensitivities to timing and frequency errors, these curves apply to any ρi, i = 0, 1, ..., 63 within the dynamic range of the
equipment.

Since the dynamic range of the code-domain power measurement equipment is approximately 45 dB, precise values of
code-domain power, well within the tolerances specified by the IS-97 standard, can be obtained for ρi = 1.0 to ρi �
3.2�10–5 if the tolerances on the estimates of timing and frequency errors are satisfied.  To observe code-domain power to a
level of –45 dB, it would be necessary to use a test signal with a waveform quality factor of ρ� 0.99997, where the errors
are uniformly distributed in power over the 64 code channels.

The measurements of ρ and ρi may have error components that are random.  Moreover, if a sequence of measurements is
made from independent data records, then the random errors for the independent records are uncorrelated. To reduce the
random error components added to the measurements of ρ and ρi, averaging of a set of measurements obtained from the
independent records can be performed. To perform this averaging, it is not appropriate to average the values obtained for ρ
and ρi directly, since this would introduce a bias to the final result. Rather, the energy terms contained in the numerator and
denominator of equation 40 for ρ and equation 32 for ρi are averaged separately, and then the final values are obtained as the
ratios of these averages.  This mode is referred to in the HP 83203B as “Fast Code-Domain Power with Averaging.”

Accuracy in Measuring ∆τi and ∆θi. The performance of the algorithms for the code-domain parameter estimator was tested
by performing simulations in which Gaussian random errors were added to the simulated transmitting signals. A theoretical
expression was derived for the standard deviation of the estimates of phase offsets, ∆θi, based on the same mathematical
model used for the simulations. It was found that the results obtained from the simulations agreed very well with the results
obtained from the theoretically derived equation, with differences of less than 10 percent. Moreover, it was found that the
error in estimating time offsets, ∆τi, when measured in nanoseconds, was approximately one-half the error in measuring
phase offsets measured in milliradians.  Since the tolerances on measurement accuracy given in Table XIV are ±10
nanoseconds for time offsets and ±10 milliradians for phase offsets, the measurement interval is governed by the accuracy
requirement for phase offsets. To measure time offsets and phase offsets to the accuracy  specified in the standard, it was
found  necessary to average subestimates of these parameters. A noteworthy outcome of the performance analysis
discussed herein is that the algorithms designed for the code-domain parameter estimator indeed minimize the sum-square
difference between the actual transmit signal and the estimated ideal transmit signal, as specified in the IS-97 standard.

The expression derived for the rms error of the estimate of the phase of a code channel is:

�
�
^ � 1

2
evm
BNT� , (64)

where evm is the effective error-vector magnitude, which is equal to the ratio of the total energy of the error divided by the
energy of the code channel signal in question, B = 615 kHz is the bandwidth of the baseband transmit signal, T is the
measurement interval for one subestimate of the phase, and N is the number of subestimates averaged to obtain the
estimate of phase.

The worst case occurs for the sync channel, which for the nominal test model given in Table XIII has 4.71% of the total
transmit energy. If the waveform quality factor for each active code channel is ρ = 0.912, then the effective evm2 for the sync
channel is given approximately as:

evm2 �
1� –1
0.0471

� 2.049 .
ρ

(65)

If the measurement interval is T = 2.0 ms (2.2 ms was used in the simulations) and the number of subestimates averaged is
34, then the resulting rms error of the estimate of the phase of the sync channel is:

�
�
^
sync

� 1
2

2.049
(615)(34)(2.0)
� � 3.50 mrad. (66)

The effective evm2 for the pilot channel is:

evm2 �
1� –1

0.2
� 0.4825 ,

ρ
(67)

from which, for the same conditions as for the sync channel,  we obtain the rms error of the estimate of the phase of the
pilot channel as:

�
�
^
pilot

� 1
2

0.4825
(615)(34)(2.0)
� � 1.70 mrad. (68)

Since the phase offset of the sync channel is:
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��
^

sync � �
^

sync – �
^

pilot , (69)

and �
^

sync and �
^

pilot are uncorrelated,

�
��

^
sync

� �
2
�
^
sync
� �

2
�
^
pilot

� � 3.52� 1.72�

� 3.89 mrad.

(70)

The estimates of phase are obtained from the sum of 25 subestimates in which the errors in the subestimates are essentially
independent. Therefore, the estimate of phase offset is well-approximated as a Gaussian random variable. Using the
Gaussian approximation, the 99% confidence interval for the estimate of the phase offset of the sync channel for the
nominal test model is:

99% confidence interval� 2.57�
��

^
sync

� 10 mrad.
(71)

�

�

The measurement accuracy requirement for ∆θi given in Table XIV is an absolute ±10 milliradians. If we interpret this as the
99% confidence interval, then the accuracy requirement can be achieved by averaging 34 estimates obtained using a 2.0-ms
measurement interval as demonstrated by the above example. Other combinations of N and T can be used to achieve the
required accuracy, provided that the value of T is not too small to allow acquisition of frequency and timing. It is
recommended that a measurement interval of T�1.0 ms be used to obtain reliable performance. Other combinations of N
and T that will allow measurement errors for ∆θi of less than ±10 mrad are presented in Fig. 15. As pointed out above, if ∆θi
is measured to the accuracy required, then the accuracy requirement for ∆τi will also be achieved. We wish to emphasize
that the accuracy of the measurements of ∆τi and ∆θi depends on the waveform quality and the percentage of power in the
code channel being measured.  The curves in Fig. 15 represent a worst-case situation in which the waveform quality is ρ =
0.912 for all code channels and only 4.71% of the transmitter power is contained in the code channel being measured. For
other test models, the lower bounds on NT can be obtained following the example given above and, for larger values of ρ,
would be significantly lower than those given in Fig. 15.

Confidence:
99.9%

99%

95%

2.5

2.25

2

1.75

1.5

1.25

1

0.75

0.5

Number of Averages N
10 20 30 40 50 60 70 80 90

Fig. 15. Lower bounds on NT for ∆θi measurement errors less than  ±10 milliradians for various confidence levels.

M
ea

su
re

m
en

t I
nt

er
va

l T
 (m

s)

Accuracy in Measuring τ0 and ∆ω. The accuracy in measuring ρ and ρi is primarily dependent on the accuracy of the
estimates of τ0 and ∆ω as shown in Figs. 13 and 14. If τ0 and ∆ω were obtained precisely, then the magnitude of the errors in
the values obtained for ρ and ρi would be less than 10–4, which is well within the accuracy specified for the HP 83203B.

The best accuracy for the estimates of τ0 and ∆ω is obtained when the full parameter estimator is employed to estimate the
time and phase offsets of code channels. In this case, τi and θi are determined for all active code channels and the estimate
of ∆ω is obtained jointly with the estimates of τi and θi.

The next best accuracy for the estimates of τ0 and ∆ω is obtained by using a reference signal synthesized as the sum of the
reference signals for all active code channels, as is done for the full parameter estimator, but with the time and phase offsets
set equal to zero in the parameter estimator. This procedure reduces the search for phase and timing from a 2K-dimensional
problem, where K is the number of active code channels, to a 2-dimensional problem.

The accuracy of the estimates of τ0 and ∆ω was determined through simulations in which the nominal signal model was
used with random time and phase offsets introduced to the code channels and a measurement interval of 1.09 ms. Timing
and phase offsets that were uniformly distributed over a range of ±50 ns for time offsets and ±50 mrad for phase offsets
were introduced. The results of these simulations are presented in Figs. 16 and 17, which show the rms errors of the
estimates of τ0 and ∆ω, respectively, as functions of ρ.  
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Fig. 16. Rms error of the estimate of τ0 as a function of signal quality ρ, determined through simulations in which the

nominal signal model was used with random time offsets of 0 to ±50 ns and phase offsets of 0 to ±50 mrad introduced

to the code channels and a measurement interval of 1.09 ms.
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Fig. 17. Rms error of the estimate of ∆ω as a function of signal quality ρ, determined through simulations using the

same signal model as for Fig. 16.
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From Fig. 16, we see that the estimates of τ0 obtained from the 2-dimensional parameter estimator are nearly as accurate as
those obtained from the full 2K-dimensional parameter estimator.  On the other hand, we see from Fig. 17 that the full
parameter estimator provides roughly a factor of two less error in estimating frequency compared to the 2-dimensional
parameter estimator.  These curves show that there is little advantage in using the full parameter estimator unless time and
phase offsets are outputs of the measurement. Therefore,  the second method of obtaining estimates of τ0 and ∆ω is
recommended when measuring code-domain power without measuring  time and phase offsets.  A mode in the HP 83203B
referred to as “Accurate Code-Domain Power” employs this second method of obtaining estimates of τ0 and ∆ω.

The third method for obtaining estimates of τ0 and ∆ω uses a reference signal consisting of only the pilot signal.  This mode
is referred to as “Fast Code-Domain Power” in the HP 83203B.  If only the pilot channel is transmitted, then this mode is as
accurate as the other two and is appropriate for measuring code-domain power.  Moreover, if τ0 and ∆ω are known a priori,
then the “Fast Code-Domain Power” mode should be used.

Presented in Fig. 18 are curves obtained from simulations showing the rms error in estimating τ0 and ∆ω for the case in
which only the pilot channel is transmitted and a measurement interval of 1.09 ms is used. Curiously, these curves show that
the timing errors in ns and the frequency errors in Hz are nearly identical. If we assume that the measurement errors are
Gaussian, then we can obtain the 99% confidence limits for the measurement of τ0 and ∆ω by multiplying the rms values
given in Fig. 18 by a factor of 2.57. To obtain the measurement error of less than ±10 ns for τ0 and less than ±10 Hz for ∆ω as
specified in Table XIV with a confidence of 99%, the rms errors in measuring τ0 and ∆ω must be less than 3.9 ns for τ0 and
less than 3.9 Hz for ∆ω.  From Fig. 18, we see that τ0 and ∆ω can be estimated to sufficient accuracy for 0.85<ρ<1.0 using a
measurement interval of 1.09 ms. This exceeds the range of 0.9<ρ<1.0 specified in Table XII.

Referring to the performance curves in Figs. 16 and 17, we see that if ρ is less than approximately 0.97, then the
performance given by these curves may not be adequate. If it is necessary to obtain better estimates of τ0 and ∆ω than those



February 1996 Hewlett-Packard Journal       25

given in Figs. 16, 17, and 18, then it will be necessary to use a longer measurement interval than the 1.09 ms considered here,
or to average estimates obtained from independent time records, as is done for the time and phase offset measurements. As
for the time and phase offset estimates, the rms errors of the estimates of τ0 and ∆ω are proportional to 1� NT� .
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Fig. 18. Curves obtained from simulations showing the rms error in estimating τ0 and ∆ω for the case in which only

the pilot channel is transmitted and a measurement interval of 1.09 ms is used.
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Measurement Examples
Typical results obtained with the HP 8921A cell site test set using the HP 83203B measurement algorithms are presented in
Figs. 19 and 20. These results are not intended to validate any particular base station, but are presented only to illustrate
actual measurements obtained using the algorithms discussed in this paper. The results presented in Fig. 19 were obtained
from a base station transmitter in which the pilot, paging channel 1, sync channel 32, and one full-rate traffic channel 11
were active. From Fig. 19a, we see that the floor of the code-domain power is at approximately –38 dB relative to the total
transmitter power which corresponds to a relative error energy level of –38 dB + 18 dB = –20 dB. The factor of 18 dB
corresponds to the distribution of energy to 64 code channels. The floor level of –38 dB corresponds to a value of ρ
approximately equal to:

� 1
1� 10–2.0

� 0.9901 .ρ (72)

The value of ρ measured was 0.9882. From the measured value of  ρ we can calculate the approximate value of the floor
level of the code-domain spectrum as:

Floor Level � 10log10(1� – 1) – 18

� –37.23 dB,

ρ
(73)

which agrees closely with the floor level we see in Fig. 19a.

From the plot of code-domain power in Fig. 19a, we see that code channel 33 is significantly above the floor, even though
code channel 33 was not active. This is an indication that the active code channels were leaking energy into code channel
33. It should be pointed out that the base station was overdriven during this measurement, which could be seen from a
measurement of the spectrum of the transmitted signal. The plot of the measured spectrum is not included in this paper.

Measurements of time offsets and phase offsets obtained for a measurement interval of 1.25 ms are presented in Figs. 19b
and 19c. For these measurements no averaging was used; therefore, the value of NT to use in equation 64 to determine the
accuracy of the measurement is NT = 1.25 ms. The channel with the smallest energy level was the sync channel 32 for which
the relative measured energy level was –12.8 dB. This corresponds to 5.25% of the energy in the sync channel. By using
equation 65 with ρ = 0.9882, we obtain an effective evm2 for the sync channel of:

evm2 �
1� – 1
0.0525

� 0.227 .
ρ

(74)

Using this value in equation 64, we obtain for the rms error of the estimate of the phase of the sync channel:

�
�
^
sync

� 1
2

0.227
(615)(1.25)
� � 8.6 mrad. (75)

The relative power in the pilot channel was –1.41 dB which corresponds to 7.73% of the total energy in the pilot. By
following the above procedure for the pilot channel, we obtain the rms error for the estimate of the phase of the pilot
channel:
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(b)

(a)

(c)

Fig. 19. Results of code-domain measurements of a base station transmitter with the pilot (0), paging channel (1),

sync channel (32), and one full-rate traffic channel (11) active. (a) Code-domain power measurements. (b) Time offset

measurements. (c) Phase offset measurements.

�
�
^
pilot

� 7.3 mrad. (76)

Using the rms errors obtained above in equation 70, we obtain the rms error in the measurement of the phase offset of the
sync channel:

�
�
^
sync

� 8.62� 7.32� � 11.3 mrad. (77)

and by using the Gaussian assumption used for equation 71 we obtain:
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(b)

(c)

(a)

Fig. 20. Results of code-domain measurements of a base station transmitter with the pilot (channel 0), paging

channel (1), sync channel (32), and four full-rate traffic channels (5, 6, 7, 8) active. (a) Code-domain power

measurements. (b) Time offset measurements. (c) Phase offset measurements.

99% confidence interval� 2.57�
��

^
sync

� 29 mrad.
(78)

�

�

Thus, from the results of the simulations discussed previously, we can expect a 99% confidence interval for the
measurement of time offset of approximately ±14.5 ns.

From Fig. 19b, we see that the measured time offsets are within the ±50-ns tolerance given in the IS-97 standards, with the
worst-case 17-ns time offset occurring for the paging channel.  The time offset specification is satisfied even if we include
the ±14.5-ns confidence interval. From Fig. 19c, we see that the phase offsets for the sync channel and the traffic channel
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are well within the ±50-mrad tolerance given by the standard. However, the measured phase offset for the traffic channel
was 91.8 mrad, which is outside the tolerance specified by the standard.

For the time and phase offset measurements presented here, the confidence intervals for the measurements were larger
than could be used for valid tests. As discussed in the section on accuracy above, to obtain acceptable measurement
accuracy it is necessary to average estimates of time and phase offsets. For the measurement situation of Fig. 19, acceptable
measurement accuracy would have been achieved by averaging nine estimates to reduce the measurement confidence
intervals by a factor of 3.

The results of the code-domain measurements of a base station transmitter in which four full-rate code channels 5, 6, 7, and
8 are active are presented in Fig. 20. In this case, we see that a significant amount of energy is leaked to inactive code
channels.  From Figs. 20b and 20c, we see that the largest time offset and phase offset are –15.6 ns and 69 mrad,
respectively, for the sync channel.  For these results, a single measurement interval of 1.25 ms was used, which results in
large measurement confidence intervals.
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